유한차분 시간영역법 전자파 해석 기술

  • 조제훈 (한양대학교 전자컴퓨터통신공학과) ;
  • 정경영 (한양대학교 전자컴퓨터통신공학과)
  • Published : 2017.11.30

Abstract

Keywords

Acknowledgement

Grant : RF 설계 및 EM 해석을 위한 클라우드 기반 SW 플랫폼 개발

Supported by : 정보통신기술연구진흥센터

References

  1. A. Taflove, S. C. Hangess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed, Artech House, 2005.
  2. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302-307, 1966. https://doi.org/10.1109/TAP.1966.1138693
  3. A. Taflove, "A perspective on the 40-year history of FDTD computational electrodynamics", Applied Computational Electromagnetics Society(ACES) Conference, Miami, Florida, Mar. 2006.
  4. A. Taflove, M. E. Brodwin, "Numerical solution of steadystate electromagnetic scattering problems using the time-dependent Maxwell's equations", IEEE Trans. Microwave Theory Tech., vol. 23, pp. 623-630, 1975. https://doi.org/10.1109/TMTT.1975.1128640
  5. A. Taflove, M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye", IEEE Trans. Microwave Theory Tech., vol. 23, pp. 888-896, 1975. https://doi.org/10.1109/TMTT.1975.1128708
  6. R. Holland, "Threde: A free-field EMP coupling and scattering code", IEEE Trans. Nuclear Sci., vol. 24, pp. 2416-2421, 1977. https://doi.org/10.1109/TNS.1977.4329229
  7. K. S. Kunz, K. M. Lee. "A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I: The method and its implementation", IEEE Trans. Electromagn. Compat., vol. 20, pp, 328-333, 1978.
  8. A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems", IEEE Trans. Electromagn. Compt., vol. 22, pp. 191-202, 1980.
  9. G. Mur, "Absorbing boundary conditions of the finite-difference approximation of the time-domain electromagnetic field equations", IEEE Trans. Electromagn. Compat., vol. 23, pp. 377-382, 1981.
  10. K. R. Umashankar, A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects", IEEE Trans. Electromagn. Compat., vol. 24, pp. 397-405, 1982.
  11. A. Taflove, K. R. Umashankar, "Radar cross section of general three-dimensional scatterers", IEEE Trans. Electromagn. Compat., vol. 25, pp. 433-440, 1983.
  12. Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analyses", Scientia Sinica (series A), vol. XXVII, pp. 1063-1076, 1984.
  13. W. Gwarek, "Analysis of an arbitrarily shaped planar circuit - A time-domain approach", IEEE Trans. Microwave Theory Tech., vol. 33, pp. 1067-1072, 1985. https://doi.org/10.1109/TMTT.1985.1133170
  14. D. H. Choi, W. J. Hoefer, "The finite-difference time-domain method and its application to eigenvalue problems", IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1464-1470, 1986. https://doi.org/10.1109/TMTT.1986.1133564
  15. G. A. Kriegsmann, A. Taflove, and K. R. Umashankar, "A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach", IEEE Trans. Antennas Propagat., vol. 35, pp. 153-161, 1987. https://doi.org/10.1109/TAP.1987.1144062
  16. T. G. Moore, J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, "Theory and application of radiation boundary operators", IEEE Trans. Antennas Propagat., vol. 36, pp. 1797-1812, 1988. https://doi.org/10.1109/8.14402
  17. K. R. Umashankar, A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity", IEEE Trans. Antennas Propagat., vol. 35, pp. 1248-1257, 1987. https://doi.org/10.1109/TAP.1987.1144000
  18. A. Taflove, K. R. Umashnakar, B. Beker, F. A. Harfoush, and K. S. Yee, "Detailed FDTD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens", IEEE Trans. Antennas Propagat., vol. 36, pp. 247-257, 1988. https://doi.org/10.1109/8.1102
  19. T. G. Jurgens, A. Taflove, K. R. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surface", IEEE Trans. Antennas Propagat., vol. 40, pp. 357-366, 1992. https://doi.org/10.1109/8.138836
  20. A. C. Cangellaris, C. C. Lin, and K. K. Mei, "Point-matched time-domain finite element methods for electromagnetic radiation and scattering", IEEE Trans. Antennas Propagt., vol. 35, pp. 1160-1173, 1987. https://doi.org/10.1109/TAP.1987.1143981
  21. V. Shankar, A. H. Mohammadian, and W. F. Hall, "A timedomain finite-volume treatment for the Maxwell equations", Electromagnetics, vol. 10, pp. 127-145, 1990. https://doi.org/10.1080/02726349008908232
  22. N. K. Madsen, R. W. Ziolkowski, "A three-dimensional modified finite volume technique for Maxwell's equations", Electromagnetics, vol. 10, pp. 147-161, 1990. https://doi.org/10.1080/02726349008908233
  23. D. M. Sullivan, O. P. Gandhi, and A. Taflove, "Use of the finite-difference time-domain method in calculating EM absorption in man models", IEEE Trans. Biomed. Engrg., vol. 35, pp. 179-186, 1988. https://doi.org/10.1109/10.1360
  24. X. Zhang, J. Fang, K. K. Mei, and Y. Liu, "Calculation of the dispersive characteristics of microstrips by the time-domain finite-difference method", IEEE Trans. Microwave Theory Tech., vol. 36, pp. 263-267, 1988. https://doi.org/10.1109/22.3514
  25. J. Fang, "Time-domain finite difference computations for Maxwell's equations", Ph.D. dissertation, EECS Dept., Univ. of California, Berkeley, CA, 1989.
  26. T. Kashiwa, I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization", Microwave Optics Tech. Lett., vol. 3, pp. 203-205, 1990. https://doi.org/10.1002/mop.4650030606
  27. R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite-difference timedomain formulation for dispersive materials", IEEE Trans. Electromagn. Compat., vol. 32, pp. 222-227, 1990. https://doi.org/10.1109/15.57116
  28. R. M. Joseph, S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses", Optics Lett., vol. 16, pp. 1412-1414, 1991. https://doi.org/10.1364/OL.16.001412
  29. J. G. Maloney, G. S. Smith, and W. R. Scott, Jr., "Accurate computation of the radiation from simple antennas using the finite-difference time-domain method", IEEE Trans. Antennas Propagat., vol. 38. pp. 1059-1065, 1990. https://doi.org/10.1109/8.55618
  30. D. S. Katz, A. Taflove, M. J. Piket-May, and K. R. Umashankar, "FDTD analysis of electromagnetic wave radiation from systems containing horn antennas", IEEE Trans. Antennas Propagat., vol. 39, pp. 1203-1212, 1991. https://doi.org/10.1109/8.97356
  31. P. A. Tirkas, C. A. Balanis, "Finite-difference time-domain technique for radiation by horn antennas", Proc. 1991 IEEE Antennas Propagat. Soc. Intl. Symp., vol. 3, pp. 1750-1753, 1991.
  32. E. Sano, T. Shibata, "Fullwave analysis of picosecond photoconductive switches", IEEE J. Quantum Electron., vol. 26, pp. 372-377, 1990. https://doi.org/10.1109/3.44970
  33. S. M. El-Ghazaly, R. P. Joshi, and R. O. Grondin, "Electromagnetic and transport considerations in sub-picosecond photoconductive switch modeling", IEEE Trans. Microwave Theory Tech., vol. 38, pp. 629-637, 1990. https://doi.org/10.1109/22.54932
  34. R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation", IEEE Trans. Antennas Propagat., vol. 39, pp. 429-433, 1991. https://doi.org/10.1109/8.81453
  35. P. M. Goorjian, A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons", Optics Lett., vol. 17, pp. 180-182, 1992. https://doi.org/10.1364/OL.17.000180
  36. R. W. Ziolkowski and J. B. Jerkins, "Full-wave vector Maxwell's equations modeling of self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time", J. Optical Soc. America B, vol. 10, pp. 186-198, 1993.
  37. R. M. Joseph, P. M. Goorjian, and A. Taflove, "Direct time integration of Maxwell's equations in 2-D dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons", Optics Lett., vol. 18, pp. 491-493, 1993. https://doi.org/10.1364/OL.18.000491
  38. R. M. Joseph, A. Taflove, "Spatial soliton deflection mechansim indicated by FDTD Maxwell's equations modeling", IEEE Photonics Tech. Lett., vol. 2, pp. 1251-1254, 1994.
  39. W. Sui, D. A. Christensen, and C. H. Durney, "Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements", IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724-730, 1992. https://doi.org/10.1109/22.127522
  40. B. Toland, B. Houshmand, and T. Itoh, "Modeling of nonlinear active regions with the FDTD method", IEEE Microwave Guided Wave Lett., vol. 3, pp. 333-335, 1993. https://doi.org/10.1109/75.244870
  41. V. A. Thomas, M. E. Jones, M. J. Piket-May, A. Taflove, and E. Harrigan, "The use of SPICE lumped circuits as sub-grid models for FDTD high-speed electronic circuit design", IEEE Microwave Guided Wave Lett., vol. 4, pp. 141-143, 1994. https://doi.org/10.1109/75.289516
  42. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comp. Phys., vol. 114, pp. 185-200, 1994. https://doi.org/10.1006/jcph.1994.1159
  43. D. S. Katz, E. T. Thiele, and A. Taflove, "Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes", IEEE Microwave Guided Wave Lett., vol. 4, pp. 268-270, 1994. https://doi.org/10.1109/75.311494
  44. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, "Ultrawideband absorbing boundary condition for termination of waveguideng structures in FDTD simulations", IEEE Microwave Guided Wave Lett., vol. 4, pp. 344-346, 1994. https://doi.org/10.1109/75.324711
  45. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condtion", IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. https://doi.org/10.1109/8.477075
  46. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices", IEEE Trans. Antennas Propagat., vol. 44, pp. 1630-1693, 1996. https://doi.org/10.1109/8.546249
  47. Q. H. Liu, The PSTD Algorithm: A Time Domain Method Requiring Only Two Grids Per Wavelength, New Mexco State Univ., Las Curces, NM, Tech. Rept, NMSU-ECE96013, 1996.
  48. Q. H. Liu, "The pseudospectral time-domain(PSTD) method: A new algorithm for solutions of Maxwell's equations", Proc. 1997 IEEE Antennas Propagat. Soc. Intl. Symp., vol. 1, pp. 122-125, 1997.
  49. O. M. Ramahi, "The complementary operators method in FDTD simulations", IEEE Anteenas Propagat. Mag., vol. 39, pp. 33-45, Dec. 1997.
  50. S. Dey, R. Mittra, "A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects", IEEE Microwave Guided Wave Lett., vol. 7, pp. 273-275, 1997. https://doi.org/10.1109/75.622536
  51. J. G. Maloney, M. P. Kesler, "Analysis of periodic structures", Chap. 6 in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, (ed.), Norwood, Ma: Artech House, 1998.
  52. A. S. Nagra, R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media", IEEE Trans. Antennas Propagat., vol. 46, pp. 334-340, 1998. https://doi.org/10.1109/8.662652
  53. S. C. Hagness, A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors", IEEE Trans. Biomed. Engrg., vol. 45, pp. 1470-1479, 1988.
  54. J. B. Schneider, C. L. Wagner, "FDTD dispersion revisited: Faster-than-light propagation", IEEE Microwave Guided Wave Lett., vol 9, pp. 54-56, 1999. https://doi.org/10.1109/75.755044
  55. T. Namiki, "3-D ADI-FDTD method unconditionaly stable time-domain algorithm for solving full vector Maxwell's equations", IEEE Trans. Microwave Theory Tech., vol 48, pp. 1743-1748, 2000. https://doi.org/10.1109/22.873904
  56. F. Zheng, Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finitedifference time-domain method", IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1550-1558, 2000. https://doi.org/10.1109/22.869007
  57. J. A. Roden, S. D. Gedney, "Convolutional PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media", Microwave Optical Tech. Lett., vol. 27, pp. 334-339, 2000. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
  58. T. Rylander, A. Bondeson, "Stable FDTD-FEM hybrid method for Maxwell's equations", Comput. Phys. Comm., vol. 125, pp. 75-82, 2000. https://doi.org/10.1016/S0010-4655(99)00463-4
  59. M. Hayakawa, T. Otsuyama, "FDTD analysis of ELF wave propagation in inhomogeneous subionospheric waveguide models", ACES J., vol. 17, pp. 239-244, 2002.
  60. J. J. Simpson, A. Taflove, "Three-dimensional FDTD modeling of impulsive ELF propagation about the earth-sphere", IEEE Trans. Antennas Propagat., vol. 52, pp. 443-451, 2004. https://doi.org/10.1109/TAP.2004.823953
  61. J. J. Simpson, R. P. Heikes, and A. Taflove, "FDTD modeling of a novel ELF radar for major oil deposits using a three-dimensional geodesic grid of the earth-ionosphere waveguide", IEEE Trans. Antennas Propagat., vol. 52, pp. 1734-1741, 2006.
  62. H. De Raedt, K. Michielsen, J. S. Kole, and M. T. Figge, "Solving the Maxwell equations by the Chebyshev method: A one-step finite difference time-domain algorithm", IEEE Trans. Antennas Propagat., vol. 51, pp. 3155-3160, 2003. https://doi.org/10.1109/TAP.2003.818809
  63. I. Ahmed, E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LODFDTD method", IEEE Trans. Antennas Propagat., vol. 56, pp. 3596-3600, 2008. https://doi.org/10.1109/TAP.2008.2005544
  64. Y. Taniguchi, Y. Baba, N. Nagaoka and A. Ametani, "An improved thin wire represintation for FDTD computations", IEEE Trans. Antennas Propagat., vol. 56, pp. 3248-3252, 2008. https://doi.org/10.1109/TAP.2008.929447
  65. R. M. S. de Oliveira, C. L. S. S. Sobrinho, "Computational environment for simulating lightning strokes in a power substation by finite-difference time-domain method", IEEE Trans. Electromagn. Compat., vol. 51, pp. 995-1000, 2009. https://doi.org/10.1109/TEMC.2009.2028879
  66. F. I. Moxley III, T. Byrnes, F. Fujiwara, and W. Dai, "A generalized finite-difference time-domain quantum method for the N-body interacting Hamiltonian", Comp. Phys. Comm., vol. 183, pp. 2434-2440, 2012. https://doi.org/10.1016/j.cpc.2012.06.012
  67. F. I. Moxley III, D. T. Chuss, and W. Dai, "A generalized finite-difference time-domain scheme for solving nonlinear Schrödinger equations", Comp. Phys. Comm., vol. 184, pp. 1834-1841, 2013. https://doi.org/10.1016/j.cpc.2013.03.006
  68. K. S. Oh, J. E. Shutt-Anie, "An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method", IEEE Trans. Antennas Propagat., pp. 660-606, 1995.
  69. A. Bonderson, T. Rylander, and P. Ingerlström, Computational Electrodynamics, Springer, 2005.