DOI QR코드

DOI QR Code

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye

나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서

  • 정승화 (한양대학교 응용화학과) ;
  • 조영범 (한양대학교 바이오나노공학과) ;
  • 김용신 (한양대학교 응용화학과)
  • Received : 2017.10.28
  • Accepted : 2017.11.26
  • Published : 2017.11.30

Abstract

A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Keywords

References

  1. K. Lu, L. B. Collins, H. Ru, E. Bermudez, and J. A. Swenberg, "Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia", Toxicol. Sci., Vol. 116, No. 2, pp. 441-451, 2010. https://doi.org/10.1093/toxsci/kfq061
  2. J. Wang, L. Liu, S.-Y. Cong, J.-Q. Qi and B.-K. Xu, "An enrichment method to detect low concentration formaldehyde", Sens. Actuators B-Chem, Vol. 134, No. 2, pp. 1010-1015, 2008. https://doi.org/10.1016/j.snb.2008.07.010
  3. J. Y. Kim, J. Lee, S. Hong, and T. D. Chung, "Formaldehyde gas sensing chip based on single-walled carbon nanotubes and thin water layer", Chem. Commun., Vol. 47, No.10, pp. 2892-2894, 2011. https://doi.org/10.1039/c0cc04978f
  4. H.-T. Kim, T.-W. Kim, W.-H. Hong, and S.-I. Tanabe, "Concentration of formaldehyde, acetaldehyde, and five volatile organic compounds in indoor air: the clean-healthy house construction standard (South Korea)", JAABE., Vol. 16, No. 3, pp. 633-639, 2017.
  5. J. Flueckiger, F. K. Ko, and K. C. Cheung, "Microfabricated formaldehyde gas sensors", Sensors, Vol. 9, No. 11, pp. 9196-9215, 2009. https://doi.org/10.3390/s91109196
  6. X. Wang, B. Ding, M. Sun, J. Yu, and G. Sun, "Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors", Sens. Actuators B-Chem, Vol. 144, No. 1, pp. 11-17, 2010. https://doi.org/10.1016/j.snb.2009.08.023
  7. P.-R. Chung, C.-T. Tzeng, M.-T. Ke, and C.-Y. Lee, "Formaldehyde gas sensors: a review", Sensors, Vol. 13, No. 4, pp. 4468-4484, 2013. https://doi.org/10.3390/s130404468
  8. C.-Y. Lee, C.-M. Chiang, Y.-H. Wang, and R.-H. Ma, "A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection", Sens. Actuators B-Chem., Vol. 122, pp. 503-510, 2007. https://doi.org/10.1016/j.snb.2006.06.018
  9. C. Xie, L. Xiao, M. Hu, Z. Bai, X. Xia, and D. Zeng, "Fabrication and formaldehyde gas-sensing property of ZnO-$MnO_2$ coplanar gas sensor arrays", Sens. Actuators BChem., Vol. 145, pp. 457-463, 2010. https://doi.org/10.1016/j.snb.2009.12.052
  10. A. Hulanicki, S. Glab, and F. Ingman, "Chemical sensors definitions and classification", Pure & Appl. Chem., Vol. 63, No. 9, pp. 1247-1250, 1991. https://doi.org/10.1351/pac199163091247
  11. H. Seo, S. Jung, and S. Jeon, "Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers", Sens. Actuators B-Chem, Vol. 126, No. 2, pp. 522-526. 2007. https://doi.org/10.1016/j.snb.2007.04.004
  12. N. Nakano, and K. Nagashima, "An automatic monitor of formaldehyde in air by a monitoring tape method", J. Environ Monit., Vol. 1, pp. 255-258, 1999. https://doi.org/10.1039/a900410f
  13. Y. Suzuki, N. Nakano, and K. Suzuki, "Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective and sensitive detection of formaldehyde", Environ. Sci. Technol., Vol. 37, pp. 5695-5700, 2013.
  14. X. Wang, Y. Si, J. Wang, B. Ding, J. Yu, and S. S. Al-Deyab, "A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets", Sens. Actuators B-Chem, Vol. 163, No. 1, pp. 186-193, 2012. https://doi.org/10.1016/j.snb.2012.01.033
  15. C. Zhang, and K. S. Suslick, "A colorimetric sensor array for organics in water", J. Am. Chem. Soc., Vol. 127, No. 33, pp. 11548-11549, 2005. https://doi.org/10.1021/ja052606z
  16. L. Feng, C. J. Musto, and K. S. Suslick, "A simple and highly sensitive colorimetric detection method for gaseous formaldehyde" J. Am. Chem. Soc., Vol. 132, No. 12, pp. 4046-4047, 2010. https://doi.org/10.1021/ja910366p
  17. N. A. Rakow, and K. S. Suslick. "A colorimetric sensor array for odour visualization", Nature, Vol. 406, pp. 710-713, 2000. https://doi.org/10.1038/35021028
  18. Q. Meng. T. Han, G. Wang, N. Zheng, C. Cao, and S. Xie, "Preparation of a natural dye doped Ormosil coating for the detection of formaldehyde in the optical gas sensor", Sens. Actuators B-Chem, Vol. 196, pp. 238-244, 2014. https://doi.org/10.1016/j.snb.2014.02.018
  19. X. Qin, R. Wang, F. Tsow, E. Forzani, X. Xian, and N. Tao, "A colorimetric chemical sensing platform for real-time monitoring of indoor formaldehyde", IEEE Sens. J., Vol. 15, No. 3, pp. 1545-1551, 2015. https://doi.org/10.1109/JSEN.2014.2364142
  20. J. Lin, "Recent development and applications of optical and fiber-optic pH sensors", Trends Analyt. Chem., Vol. 19, No. 9, 2000.
  21. K. H. Hong, K. W. Oh, and T. J. Kang, "Polyaniline-nylon 6 composite fabric for ammonia gas sensor", J. Appl. Polym. Sci., Vol. 92, No. 1, pp. 37-42, 2004. https://doi.org/10.1002/app.13633
  22. B. Ding, C. Li, Y. Miyauchi, O. Kuwaki, and S. Shiratori, "Formation of novel 2D polymer nanowebs via electrospinning", Nanotechnology, Vol. 17, No. 15, pp. 3685-3691, 2006. https://doi.org/10.1088/0957-4484/17/15/011
  23. S. L. M. Neto, A. V. Wangenheim, E. B. Pereira, and E. Comunello, "The use of euclidean geometric distance on RGB color space for the classification of sky and cloud patterns", J. Atmos. Ocean Technol., Vol. 27, No. 9, pp. 1504- 1517, 2010. https://doi.org/10.1175/2010JTECHA1353.1
  24. L. Allou. L. El Maimouni, and S. Le Calve., "Henry's law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition", Atmos. Environ., Vol. 45, No.17, pp. 2991-2998, 2011. https://doi.org/10.1016/j.atmosenv.2010.05.044
  25. R. W. Sabnis, "Handbook of acid-base indicators", CRC Press, Boca Raton, pp. 43-361, 2007.
  26. M. C. Janzen, J. B. Ponder, D. P. Bailey, C. K. Ingison, and K. S. Suslick, "Colorimetric sensor arrays for volatile organic compounds", Anal. Chem., Vol. 78, No. 11, pp. 3591-3600, 2006. https://doi.org/10.1021/ac052111s