DOI QR코드

DOI QR Code

An Overview of Techniques in Enzyme Immobilization

  • Nguyen, Hoang Hiep (Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Moonil (Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2017.09.20
  • Accepted : 2017.11.21
  • Published : 2017.11.30

Abstract

Immobilized enzymes have become the subject of considerable interest due to their excellent functional properties such as reusability, cost-effectiveness, and optimality during the past decades. Enzyme immobilization technology is not only used in industrial processes, but also a component technology of products for medical diagnostics, therapy, food industry, bio energy, and biomaterial detection. In this review, new methods for enzyme immobilization are introduced, and the advantages and disadvantages of a variety of techniques in enzyme immobilization will be also discussed.

Acknowledgement

Supported by : KRIBB

References

  1. N. Gurung, S. Ray, S. Bose, and V. Rai, Biomed. Res. Int. 329121 (2013).
  2. R. DiCosimo, J. McAuliffe, A. J. Poulose, and G. Bohlmann, Chem. Soc. Rev. 42, 6437 (2013). https://doi.org/10.1039/c3cs35506c
  3. E. Katchalski-Katzir, Trends Biotechnol. 11, 471 (1993). https://doi.org/10.1016/0167-7799(93)90080-S
  4. S. Li, X. Yang, S. Yang, M. Zhu, and X. Wang, Comput. Struct. Biotechnol. J. 2, 1 (2012).
  5. S. Parekh, V. A. Vinci, and R. J. Strobel, Appl. Microbiol. Biotechnol. 54, 287 (2000). https://doi.org/10.1007/s002530000403
  6. J. L. Adrio and A. L. Demain, FEMS Microbiol. Rev. 30.2, 187 (2006). https://doi.org/10.1111/j.1574-6976.2005.00009.x
  7. A. Homaei, Adv. Food Biotechnol. doi: 10.1002/9781118864463.ch09 (2015). https://doi.org/10.1002/9781118864463.ch09
  8. M. Trevan, Wiley, Chichester, New York, pp 1-9 (1980).
  9. Y. Zhang, J. Ge, and Z. Liu, ACS Catal. 5, 4503 (2015). https://doi.org/10.1021/acscatal.5b00996
  10. S. Nisha, A. S. Karthick, and N. Gobi, Chem. Sci. Rev. Lett. 1.3, 148 (2012).
  11. A. Sassolas, L. J. Blum, and B. D. Leca-Bouvier, Biotechnol. Adv. 30, 489 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
  12. N. R. Mohamad, N. H. C. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab, Biotechnol. Biotechnol. Equip. 29, 205 (2015). https://doi.org/10.1080/13102818.2015.1008192
  13. K. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen, and A. Mulchandani, Electroanalysis 17, 54 (2005). https://doi.org/10.1002/elan.200403118
  14. K. A. Joshi, M. Prouza, M. Kum, J. Wang, J. Tang, R. Haddon, W. Chen, and A. Mulchandani, Anal. Chem. 78, 331 (2006). https://doi.org/10.1021/ac051052f
  15. J. H. Cheung, W. B. Stockton, and M. F. Rubner, Macromolecules 30, 2712 (1997). https://doi.org/10.1021/ma970047d
  16. Y. Lvov, K. Ariga, M. Onda, I. Ichinose, and T. Kunitake, Langmuir 13, 6195 (1997). https://doi.org/10.1021/la970517x
  17. N. G. Balabushevich, M. A. Pechenkin, I. N. Zorov, E. D. Shibanova, and N. I. Larionova, Biochem. 76, 327 (2011).
  18. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, J. Am. Chem. Soc. 117, 6117 (1995). https://doi.org/10.1021/ja00127a026
  19. M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, and K. W. Ferrara, Langmuir 23, 9401 (2007). https://doi.org/10.1021/la7009034
  20. C. Tedeschi, F. Caruso, H. Möhwald, and S. Kirstein, J. Am. Chem. Soc. 122, 5841 (2000). https://doi.org/10.1021/ja994029i
  21. S. Watanabe and S. L. Regen, J. Am. Chem. Soc. 116, 8855 (1994). https://doi.org/10.1021/ja00098a074
  22. W. Zhao, J. J. Xu, and H. Y. Chen, Electroanalysis 18, 1737 (2006). https://doi.org/10.1002/elan.200603630
  23. M. Shaolin, J. Electroanal. Chem. 370, 135 (1994). https://doi.org/10.1016/0022-0728(93)03166-M
  24. W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 82, 2385 (1986). https://doi.org/10.1039/f19868202385
  25. S. Mu and H. Xue, Sensors Actuators B Chem. 31, 155 (1996). https://doi.org/10.1016/0925-4005(96)80060-8
  26. U. Hanefeld, L. Gardossi, and E. Magner, Chem. Soc. Rev. 38, 453 (2009). https://doi.org/10.1039/B711564B
  27. R. A. Sheldon, Adv. Synth. Catal. 349, 1289 (2007). https://doi.org/10.1002/adsc.200700082
  28. J. Porath, Biopolymers 26, S193 (1987). https://doi.org/10.1002/bip.360260017
  29. K. D. Caldwell, R. Axén, M. B. Wall, and J. Porath, Biotechnol. Bioeng. 18, 1573 (1976). https://doi.org/10.1002/bit.260181107
  30. K. D. Caldwell, R. Axén, M. Bergwall, and J. Porath, Biotechnol. Bioeng. 18, 1589 (1976). https://doi.org/10.1002/bit.260181108
  31. S. J. Novick and J. D. Rozzell, Microb. Enzym. Biotransformations 17, 247 (2005).
  32. G. Marrazza, Biosensors 4, 301 (2014). https://doi.org/10.3390/bios4030301
  33. K. Ovsejevi, C. Manta, and F. Batista-Viera, Methods Mol. Biol. 1051, 89 (2013).
  34. K. Ichimura, J. Polym. Sci. Polym. Chem. Ed. 20, 1411 (1982). https://doi.org/10.1002/pol.1982.170200604
  35. K. Ichimura and S Watanabe, J. Polym. Sci. Polym. Chem. Ed. 20, 1419 (1982). https://doi.org/10.1002/pol.1982.170200605
  36. K. Ichimura, J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2817-2828. https://doi.org/10.1002/pol.1984.170221108
  37. L. L. Hench and J. K. West, Chem. Rev. 90, 33 (1990). https://doi.org/10.1021/cr00099a003
  38. M. Campas and J. L. Marty, Immobil. Enzym. Cells 22, 77 (2006).
  39. R. Gupta and N. K. Chaudhury, Biosens. Bioelectron. 22, 2387 (2007). https://doi.org/10.1016/j.bios.2006.12.025
  40. P. C. Jeronimo, A. N. Araujo, B. S. M. Conceicao, and M. Montenegro, Talanta 72, 13 (2007). https://doi.org/10.1016/j.talanta.2006.09.029
  41. V. Kandimalla, V. Tripathi, and H. Ju, Crit. Rev. Anal. Chem. 36, 73 (2006). https://doi.org/10.1080/10408340600713652
  42. J. Park and H. Chang, Biotechnol. Adv. 18, 303 (2000). https://doi.org/10.1016/S0734-9750(00)00040-9
  43. B. S. Chang and R. R. Mahoney, Biotechnol. Appl. Biochem. 22, 203 (1995).
  44. G. B. Broun, Methods Enzymol. 44, 263 (1976).