DOI QR코드

DOI QR Code

THE MILLIMETER-RADIO EMISSION OF BL LACERTAE DURING TWO γ-RAY OUTBURSTS

  • Kim, Dae-Won ;
  • Trippe, Sascha ;
  • Lee, Sang-Sung ;
  • Park, Jong-Ho ;
  • Kim, Jae-Young ;
  • Algaba, Juan-Carlos ;
  • Hodgson, Jeffrey A. ;
  • Kino, Motoki ;
  • Zhao, Guang-Yao ;
  • Wajima, Kiyoaki ;
  • Kang, Sincheol ;
  • Oh, Junghwan ;
  • Lee, Taeseok ;
  • Byun, Do-Young ;
  • Kim, Soon-Wook ;
  • Kim, Jeong-Sook
  • Received : 2017.05.23
  • Accepted : 2017.11.16
  • Published : 2017.12.31

Abstract

We present a study of the inexplicit connection between radio jet activity and ${\gamma}$-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two ${\gamma}$-ray outbursts (in November 2013 and March 2015) can be seen in ${\gamma}$-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of $411{\pm}85$ days, $352{\pm}79$ days, $310{\pm}57$ days, and $283{\pm}55$ days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths $B{\sim}2{\mu}T$ and electron Lorentz factors ${\gamma}$ ~ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale ${\tau}$ scales with frequency ${\nu}$ like ${\tau}{\propto}{\nu}^{-0.2}$. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the ${\gamma}$-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second ${\gamma}$-ray event indicate that this ${\gamma}$-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.

Keywords

galaxies: active;BL Lacertae objects: individual (BL Lacertae);galaxies: jets;techniques: interferometric;radio continuum: galaxies

References

  1. Abdo, A. A., et al. 2011, The First Fermi Multifrequency Campaign on BL Lacertae: Characterizing the Low-Activity State of the Eponymous Blazar, ApJ, 730, 101 https://doi.org/10.1088/0004-637X/730/2/101
  2. Agarwal, A., et al. 2017, Core Shift Effect in Blazars, MNRAS, 469, 813 https://doi.org/10.1093/mnras/stx847
  3. Albert, J., et al. 2007, Discovery of Very High Energy ${\gamma}$-ray Emission from the Low-Frequency-Peaked BL Lacertae Object BL Lacertae, ApJ, 666, L17 https://doi.org/10.1086/521550
  4. Algaba, J.-C., et al. 2015, Interferometric Monitoring of Gamma-Ray Bright Active Galactic Nuclei II: Frequency Phase Transfer, JKAS, 48, 237
  5. Arlen, T., et al. 2013, Rapid TeV Gamma-Ray Flaring of BL Lacertae, ApJ, 762, 92 https://doi.org/10.1088/0004-637X/762/2/92
  6. Banasinski, P., Bednarek, W., & Sitarek, J. 2016, Orphan ${\gamma}$-Ray Flares from Relativistic Blobs Encountering Luminous Stars, MNRAS, 463, 26 https://doi.org/10.1093/mnrasl/slw149
  7. Bottcher, M., et al. 2003, Coordinated Multiwavelength Observations of BL Lacertae in 2000, ApJ, 596, 847 https://doi.org/10.1086/378156
  8. Bottcher, M. 2005, A Hadronic Synchrotron Mirror Model for the \Orphan" TeV Flare in 1ES 1959+650, ApJ, 621, 176 https://doi.org/10.1086/427430
  9. Bottcher, M., Harris, D. E., & Krawzcynski, H. (ed.) 2012, Relativistic Jets from Active Galactic Nuclei (Weinheim: Wiley-VCH)
  10. Blandford, R. D., & Konigl, A. 1979, Relativistic Jets as Compact Radio Sources, ApJ, 232, 34 https://doi.org/10.1086/157262
  11. Bloom, S. D., et al. 1997, Observations of A Correlated Gamma-Ray and Optical Flare for BL Lacertae, ApJ, 490, L145 https://doi.org/10.1086/311035
  12. Blumenthal, G. R., & Gould, R. J. 1970, Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases, RvMP, 42, 237
  13. Catanese, M., et al. 1997, Detection of Gamma Rays with E > 100 MeV from BL Lacertae, ApJ, 480, 562 https://doi.org/10.1086/303998
  14. Cawthorne, T. V., Jorstad, S. G., & Marscher, A. P. 2013, Polarization Structure in the Core of 1803+784: A Signature of Recollimation Shocks?, ApJ, 772, 14 https://doi.org/10.1088/0004-637X/772/1/14
  15. Chatterjee, R., et al. 2012, Similarity of the Optical-Infrared and ${\gamma}$-Ray Time Variability of Fermi Blazars, ApJ, 749, 191 https://doi.org/10.1088/0004-637X/749/2/191
  16. Denn, G. R., Mutel, R. L., & Marscher, A. P. 2000, Very Long Baseline Polarimetry of BL Lacertae, ApJS, 129, 61 https://doi.org/10.1086/313403
  17. Dodson, R., Rioja, M. J., Molina, S. N., & Gomez, J. L. 2017, High-Precision Astrometric Millimeter Very Long Baseline Interferometry Using A New Method for Multi-Frequency Calibration, ApJ, 834, 177 https://doi.org/10.3847/1538-4357/834/2/177
  18. Formalont, E. B. 1999, Image Analysis, in: Taylor, G. B., Carilli, C. L., & Perley, R. A. (eds.), Synthesis Imaging in Radio Astronomy II, ASP Conf. Ser., 180, 301
  19. Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998, A Unifying View of the Spectral Energy Distributions of Blazars, MNRAS, 299, 433 https://doi.org/10.1046/j.1365-8711.1998.01828.x
  20. Gaur, H., et al. 2015, Optical and Radio Variability of BL Lacertae, A&A, 582, A103 https://doi.org/10.1051/0004-6361/201526536
  21. Ghisellini, G., Celotti, A., Fossati, G., Maraschi, L., & Comastri, A. 1998, A Theoretical Unifying Scheme for Gamma-Ray Bright Blazars, MNRAS, 301, 451 https://doi.org/10.1046/j.1365-8711.1998.02032.x
  22. Ghisellini, G., Celotti, A., & Costamante, L. 2002, Low Power BL Lacertae Objects and the Blazar Sequence, A&A, 386, 833 https://doi.org/10.1051/0004-6361:20020275
  23. Giommi, P., Padovani, P., Polenta, G., Turriziani, S., D'Elia, V., & Piranomonte, S. 2012, A Simplified View of Blazars: Clearing the Fog around Long-Standing Selection Effects, MNRAS, 420, 2899 https://doi.org/10.1111/j.1365-2966.2011.20044.x
  24. Gomez, J. L., Marti, J. M., Marscher, A. P., Ibanez, J. M., & Alberdi, A. 1997, Hydrodynamical Models of Superluminal Sources, ApJ, 482, 33 https://doi.org/10.1086/304107
  25. Gomez, J. L., et al. 2016, Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with Radioastron. I. Imaging BL Lacertae at 21 ${\mu}as$ Resolution, ApJ, 817, 96 https://doi.org/10.3847/0004-637X/817/2/96
  26. Guo, Y. C., Hu, S. M., Li, Y. T., & Chen, X. 2016, Statistical Analysis of the Temporal Properties of BL Lacertae, MNRAS, 460, 1790 https://doi.org/10.1093/mnras/stw985
  27. Hodgson, J. A. 2015, Ultra-High Resolution Observations of Selected Blazars, Ph.D. Thesis, Universitat zu Koln
  28. Hodgson, J. A., Lee, S.-S., Zhao, G.-Y., Algaba, J.-C., Yun, Y., Jung, T., & Byun, D.-Y. 2016, The Automatic Calibration of Korean VLBI Network Data, JKAS, 49, 137
  29. Hodgson, J. A., et al. 2017, Location of ${\gamma}$-Ray Emission and Magnetic Field Strengths in OJ 287, A&A, 597, 80 https://doi.org/10.1051/0004-6361/201526727
  30. Hogbom, J. A. 1974, Aperture Synthesis with A Non-Regular Distribution of Interferometer Baselines, A&AS, 15, 417H
  31. Hovatta, T., Nieppola, E., Tornikoski, M., Valtaoja, E., Aller, M. F., & Aller, H. D. 2008, Long-Term Radio Variability of AGN: Flare Characteristics, A&A, 485, 51 https://doi.org/10.1051/0004-6361:200809806
  32. Hovatta, T., Valtaoja, E., Tornikoski, M., & Lahteenmaki, A. 2009, Doppler Factors, Lorentz Factors and Viewing Angles for Quasars, BL Lacertae Objects and Radio Galaxies, A&A, 494, 527 https://doi.org/10.1051/0004-6361:200811150
  33. Hughes, P. A., Aller, H. D., & Aller, M. F. 1985, Polarized Radio Outbursts in BL Lacertae. The Flux and Polarization of a Piston-Driven Shock, ApJ, 298, 301 https://doi.org/10.1086/163611
  34. Hughes, P. A. (ed.) 1991, Beams and Jets in Astrophysics (Cambridge: Cambridge University Press)
  35. Jorstad, S. G., Marscher, A. P., Mattox, J. R., Wehrle, A. E., Bloom, S. D., & Yurchenko, A. V. 2001a, Multiepoch Very Long Baseline Array Observations of EGRET-Detected Quasars and BL Lacertae Objects: Superluminal Motion of Gamma-Ray Bright Blazars, ApJS, 134, 181 https://doi.org/10.1086/320858
  36. Jorstad, S. G., Marscher, A. P., Mattox, J. R., Aller, M. F., Aller, H. D., Wehrle, A. E., & Bloom, S. D. 2001b, Multiepoch Very Long Baseline Array Observations of EGRETDetected Quasars and BL Lacertae Objects: Connection between Superluminal Ejections and Gamma-Ray Flares in Blazars, ApJ, 556, 738 https://doi.org/10.1086/321605
  37. Jorstad, S. G., et al. 2013, A Tight Connection between Gamma-Ray Outbursts and Parsec-Scale Jet Activity in the Quasar 3C 454.3, ApJ, 773, 147 https://doi.org/10.1088/0004-637X/773/2/147
  38. Kadler, M., et al. 2008, The Trails of Superluminal Jet Components in 3C 111, ApJ, 680, 867 https://doi.org/10.1086/529539
  39. Kaiser, C. R. 2006, The Flat Synchrotron Spectra of Partially Self-Absorbed Jets Revisited, MNRAS, 367, 1083 https://doi.org/10.1111/j.1365-2966.2006.10030.x
  40. Karamanavis, V., et al. 2016, What Can the 2008/10 Broadband Flare of PKS 1502+106 Tell Us?, A&A, 590, 48 https://doi.org/10.1051/0004-6361/201527796
  41. Kim, J.-Y., et al. 2015, PAGaN I: Multi-Frequency Polarimetry of AGN Jets with KVN, JKAS, 48, 285
  42. Krawczynski, H., et al. 2004, Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650, ApJ, 601, 151 https://doi.org/10.1086/380393
  43. Lee, S.-S., et al. 2008, A Global 86 GHz VLBI Survey of Compact Radio Sources, AJ, 136, 159 https://doi.org/10.1088/0004-6256/136/1/159
  44. Lee, S.-S., et al. 2013, Monitoring of Multi-Frequency Polarization of Gamma-Ray Bright AGNs, EPJWC, 6107007L
  45. Lee, S.-S., et al. 2014, Early Science with the Korean VLBI Network: Evaluation of System Performance, AJ, 147, 77 https://doi.org/10.1088/0004-6256/147/4/77
  46. Lee, S.-S., et al. 2015, Amplitude Correction Factors of Korean VLBI Network Observations, JKAS, 48, 229
  47. Lee, S.-S., et al. 2016, Interferometric Monitoring of Gamma-Ray Bright AGNs. I. The Results of Single-Epoch Multifrequency Observations, ApJS, 227, 8 https://doi.org/10.3847/0067-0049/227/1/8
  48. Leon-Tavares, J., Valtaoja, E., Tornikoski, M., Lahteenmaki, A., & Nieppola, E. 2011, The Connection between Gamma-Ray Emission and Millimeter Flares in Fermi/LAT Blazars, A&A, 532, A146 https://doi.org/10.1051/0004-6361/201116664
  49. Lewis, T. R., Becker, P. A., & Finke, J. D. 2016, Time-Dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation, ApJ, 824, 108 https://doi.org/10.3847/0004-637X/824/2/108
  50. Lobanov, A. P. 1998, Ultracompact Jets in Active Galactic Nuclei, A&A, 330, 79
  51. MacDonald, N. R., Marscher, A. P., Jorstad, S. G., & Joshi, M. 2015, Through the Ring of Fire: ${\gamma}$-Ray Variability in Blazars by A Moving Plasmoid Passing A Local Source of Seed Photons, ApJ, 804, 111 https://doi.org/10.1088/0004-637X/804/2/111
  52. Marscher, A. P. 1995, Probes of the Inner Jets of Blazars, PNAS, 92, 11439 https://doi.org/10.1073/pnas.92.25.11439
  53. Marscher, A. P., et al. 2008, The Inner Jet of An Active Galactic Nucleus as Revealed by A Radio-to-${\gamma}$-Ray Outburst, Nature, 452, 966 https://doi.org/10.1038/nature06895
  54. Marscher, A. P., et al. 2010, Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-Waveband Monitoring during Strong Gamma-Ray Activity, ApJL, 710, L126 https://doi.org/10.1088/2041-8205/710/2/L126
  55. Marscher, A. P., Jorstad, S. G., Larionov, V. M., Aller, M. F., & Lahteenmaki, A. 2011, Multi-Waveband Emission Maps of Blazars, JApA, 32, 233
  56. Marscher, A. P. 2012, Structure and Emission of Compact Blazar Jets, IJMPS, 8, 151
  57. Marscher, A. P. 2014, Turbulent, Extreme Multi-Zone Model for Simulating Flux and Polarization Variability in Blazars, ApJ, 780, 87
  58. Marti, J. M., Perucho, M., & Gomez, J. L. 2016, The Internal Structure of Overpressured, Magnetized, Relativistic Jets, ApJ, 831, 163 https://doi.org/10.3847/0004-637X/831/2/163
  59. Marti-Vidal, I., et al. 2012, On the Calibration of Full-Polarization 86 GHz Global VLBI Observations, A&A, 542, A107 https://doi.org/10.1051/0004-6361/201218958
  60. Maselli, A., Massaro, E., Nesci, R., Sclavi, S., Rossi, C., & Giommi, P. 2010, Multifrequency Observations of A Sample of Very Low Frequency Peaked BL Lacertae Objects, A&A, 512, A74 https://doi.org/10.1051/0004-6361/200913343
  61. Max-Moerbeck, W., et al. 2014, Time Correlation between the Radio and Gamma-Ray Activity in Blazars and the Production Site of the Gamma-Ray Emission, MNRAS, 445, 428 https://doi.org/10.1093/mnras/stu1749
  62. Netzer, H. 2013, The Physics and Evolution of Active Galactic Nuclei (New York: Cambridge)
  63. Oh, J., et al. 2015, PAGaN II: The Evolution of AGN Jets on Sub-Parsec Scales, JKAS, 48, 299
  64. Orienti, M., Dallacasa, D., & Stanghellini, C. 2007, Constraining the Nature of High Frequency Peakers, A&A, 475, 813 https://doi.org/10.1051/0004-6361:20078105
  65. Orienti, M., et al. 2013, Radio and ${\gamma}$-Ray Follow-Up of the Exceptionally High-Activity State of PKS 1510-089 in 2011, MNRAS, 428, 2418 https://doi.org/10.1093/mnras/sts201
  66. O'Sullivan, S. P., & Gabuzda, D. C. 2009, Magnetic Field Strength and Spectral Distribution of Six Parsec-Scale Active Galactic Nuclei Jets, MNRAS, 400, 26 https://doi.org/10.1111/j.1365-2966.2009.15428.x
  67. Pacholczyk, A. G. 1970, Radio Astrophysics (San Francisco: Freeman)
  68. Padovani, P. 2007, The Blazar Sequence: Validity and Predictions, Ap&SS, 309, 63 https://doi.org/10.1007/s10509-007-9455-2
  69. Park, J., & Trippe, S. 2017, The Long-Term Centimeter Variability of Active Galactic Nuclei: A New Relation between Variability Timescale and Accretion Rate, ApJ, 834, 157 https://doi.org/10.3847/1538-4357/834/2/157
  70. Press, W. H. 1978, Flicker Noises in Astronomy and Elsewhere, Comments Astrophys., 7, 103
  71. Raiteri, C. M., et al. 2013, The Awakening of BL Lacertae: Observations by Fermi, Swift and the GASP-WEBT, MNRAS, 436, 1530 https://doi.org/10.1093/mnras/stt1672
  72. Ramakrishnan, V., Hovatta, T., Nieppola, E., Tornikoski, M., Lahteenmaki, A., & Valtaoja, E. 2015, Locating the ${\gamma}$-Ray Emission Site in Fermi/LAT Blazars from Correlation Analysis between 37 GHz Radio and ${\gamma}$-Ray Light Curves, MNRAS, 452, 1280 https://doi.org/10.1093/mnras/stv321
  73. Ramakrishnan, V., et al. 2016, Locating the $-\gamma}$-Ray Emission Site in Fermi/LAT blazars - II. Multifrequency Correlations, MNRAS, 456, 171 https://doi.org/10.1093/mnras/stv2653
  74. Rani, B., et al. 2011, Spectral Energy Distribution Variation in BL Lacs and Flat Spectrum Radio Quasars, MNRAS, 417, 1881 https://doi.org/10.1111/j.1365-2966.2011.19373.x
  75. Rioja, M. J., & Dodson, R. 2011, High-Precision Astrometric Millimeter Very Long Baseline Interferometry Using A New Method for Atmospheric Calibration, AJ, 141, 114 https://doi.org/10.1088/0004-6256/141/4/114
  76. Rioja, M. J., et al. 2014, Verification of the Astrometric Performance of the Korean VLBI Network, Using Comparative SFPR Studies with the VLBA at 14/7 mm, AJ, 148, 84 https://doi.org/10.1088/0004-6256/148/5/84
  77. Rioja, M. J., Dodson, R., Jung, T., & Sohn, B. 2015, The Power of Simultaneous Multifrequency Observations for mm-VLBI: Astrometry Up to 130 GHz with the KVN, AJ, 150, 202 https://doi.org/10.1088/0004-6256/150/6/202
  78. Rybicki, G. B., & Lightman, A. P. 1997, Radiative Processes in Astrophysics (Weinheim: Wiley-VCH)
  79. Sandrinelli, A., et al. 2017, Gamma-Ray and Optical Oscillations of 0716+714, Mrk 421, and BL Lacertae, A&A, 600, 132 https://doi.org/10.1051/0004-6361/201630288
  80. Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1994, Difmap: An Interactive Program for Synthesis Imaging, BAAS, 26, 987
  81. Sokolov, A., Marscher, A. P., & McHardy, I. M. 2004, Synchrotron Self-Compton Model for Rapid Nonthermal Flares in Blazars with Frequency-Dependent Time Lags, ApJ, 613, 725 https://doi.org/10.1086/423165
  82. Spada, M., Ghisellini, G., Lazzati, D., & Celotti, A. 2001, Internal Shocks in the Jets of Radio-Loud Quasars, MNRAS, 325, 1559 https://doi.org/10.1046/j.1365-8711.2001.04557.x
  83. Stirling, A. M., et al. 2003, Discovery of A Precessing Jet Nozzle in BL Lacertae, MNRAS, 341, 405 https://doi.org/10.1046/j.1365-8711.2003.06448.x
  84. Trippe, S., et al. 2011, The Long-Term Millimeter Activity of Active Galactic Nuclei, A&A, 533, A97 https://doi.org/10.1051/0004-6361/201015558
  85. Valtaoja, E., Terasranta, H., Urpo, S., Nesterov, N. S., Lainela, M., & Valtonen, M. 1992, Five Years Monitoring of Extragalactic Radio Soures. III. Generalized Shock Models and the Dependence of Variability on Frequency, A&A, 254, 71
  86. Valtaoja, E., & Terasranta, H. 1995, Gamma Radiation from Radio Shocks in AGN Jets, A&A, 297, L13
  87. Valtaoja, E., Lahteenmaki, A., Terasranta, H., & Lainela, M. 1999, Total Flux Density Variations in Extragalactic Radio Sources. I. Decomposition of Variations into Exponential Flares, ApJS, 120, 95 https://doi.org/10.1086/313170
  88. Villata, M., et al. 2004, The WEBT Campaigns on BL Lacertae - Time and Cross-Correlation analysis of Optical and Radio Lightcurves 1968-2003, A&A, 424, 497 https://doi.org/10.1051/0004-6361:20040439
  89. Wehrle, A. E., et al. 2016, Erratic Flaring of BL Lac in 2012-2013: Multiwavelength Observations, ApJ, 816, 53 https://doi.org/10.3847/0004-637X/816/2/53
  90. Zhao, G.-Y., Jung, T., Dodson, R., Rioja, M., & Sohn, B. 2015, KVN Source-Frequency Phase-Referencing Observation of 3C 66A and 3C 66B, PKAS, 30, 629

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)