Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

  • Liu, Lei ;
  • Li, Chunyan ;
  • Fu, Chunyan ;
  • Li, Fuchang
  • Received : 2015.10.05
  • Accepted : 2016.03.16
  • Published : 2016.12.01


An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.


Niacin;Liver;Lipid Metabolism;Rabbits


  1. Anania, F. A. 2002. Leptin, liver, and obese mice--fibrosis in the fat lane. Hepatology 36:246-248.
  2. Asai, A. and T. Miyazawa. 2001. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J. Nutr. 131:2932-2935.
  3. Bai, Y., S. Zhang, K. S. Kim, J. K. Lee, and K. H. Kim. 1996. Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J. Biol. Chem. 271:13939-13942.
  4. Barter, P. J. and J. I. Lally. 1978. Metabolism of esterified cholesterol in the plasma very low density lipoproteins of the rabbit. Atherosclerosis 31:355-364.
  5. Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13:84-89.
  6. Browning, J. D., L. S. Szczepaniak, R. Dobbins, P. Nuremberg, J. D. Horton, J. C. Cohen, S. M. Grundy, and H. H. Hobbs. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387-1395.
  7. Buettner, C., E. D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, and J. Harvey-White et al. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3- independent mechanisms. Nat. Med. 14:667-675.
  8. Carling, D., M. J. Sanders, and A. Woods. 2008. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 32:S55-S59.
  9. Cho, K. H., H. J. Kim, V. S. Kamanna, and N. D. Vaziri. 2010. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim. Biophys. Acta 1800:6-15.
  10. Cruz-Bautista, I., R. Mehta, J. Cabiedes, C. Garcia-Ulloa, L. E. Guillen-Pineda, P. Almeda-Valdes, D. Cuevas-Ramos, and C. A. Aguilar-Salinas. 2015. Determinants of VLDL composition and apo B-containing particles in familial combined hyperlipidemia. Clin. Chim. Acta 438:160-165.
  11. De blas, C. and G. G. Mateos. 1998. Feed formulation. In: Nutrition of the Rabbit (Eds. C. de Blas and J. Wiseman). CAB International, Wallingford, UK. pp. 222-232.
  12. Fabbrini, E., B. S. Mohammed, K. M. Korenblat, F. Magkos, J. McCrea, B. W. Patterson, and S. Klein. 2010. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95:2727-2735.
  13. Gallardo, N., E. Bonzon-Kulichenko, T. Fernandez-Agullo, E. Molto, S. Gomez-Alonso, P. Blanco, J. M. Carrascosa, M. Ros, and A. Andres. 2007. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 148:5604-5610.
  14. Ganji, S. H., M. L. Kashyap, and V. S. Kamanna. 2015. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism 64:982-990.
  15. Hamaguchi, M., T. Kojima, N. Takeda, T. Nakagawa, H. Taniguchi, K. Fujii, T. Omatsu, T. Nakajima, H. Sarui, and M. Shimazaki et al. 2005. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann. Intern. Med. 143:722-728.
  16. Havel, P. J. 2004. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:143-151.
  17. Jin, F. Y., V. S. Kamanna, and M. L. Kashyap. 1997. Niacin decreases removal of high-density lipoprotein apolipoprotein AI but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 17:2020-2028.
  18. Kamanna, V. S., S. H. Ganji, and M. L. Kashyap. 2013. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol. 24:239-245.
  19. Kitamura, T., Y. Feng, Y. I. Kitamura, S. C. Chua Jr., A. W. Xu, G. S. Barsh, L. Rossetti, and D. Accili. 2006. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12:534-540.
  20. Lamon-Fava, S., M. R. Diffenderfer, P. H. R. Barrett, A. Buchsbaum, M. Nyaku, K. V. Horvath, B. F. Asztalos, S. Otokozawa, M. Ai, and N. R. Matthan et al. 2008. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28:1672-1678.
  21. Lillie, R. D. and H. M. Fullmer. 1976. Histopathologic Technic and Practical Histochemistry. 4th edn. McGraw-Hill, London, UK.
  22. Li, X., J. S. Millar, N. Brownell, F. Briand, and D. J. Rader. 2010. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80:1450-1457.
  23. Li, Y., G. Qin, J. Liu, L. Mao, Z. Zhang, and J. Shang. 2014. Adipose tissue regulates hepatic cholesterol metabolism via adiponectin. Life Sci. 118:27-33.
  24. Lin, Z., X. Pan, F. Wu, D. Ye, Y. Zhang, Y. Wang, L. Jin, Q. Lian, Y. Huang, and H. Ding et al. 2015. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131:1861-1871.
  25. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402-408.
  26. Matsusue, K., M. Haluzik, G. Lambert, S. H. Yim, O. Gavrilova, J. M. Ward, B. Brewer Jr., M. L. Reitman, and F. J. Gonzalez. 2003. liver-specific disruption of $ppar{\gamma}$ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111:737-747.
  27. Nakae, J. and D. Accili. 1999. The mechanism of insulin action. J. Pediatr. Endocrinol. Metab. 12:721-731.
  28. Nguyen, P., V. Leray, M. Diez, S. Serisier, J. Le Bloc'h, B. Siliart, and H. Dumon. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92:272-283.
  29. Paulauskis, J. D. and H. S. Sul. 1989. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264:574-577.
  30. Peng, Y., D. Rideout, S. Rakita, M. Sajan, R. Farese, M. You, and M. M. Murr. 2009. Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J. Gastrointest. Surg. 13:2043-2049.
  31. Pullen, D. L., J. S. Liesman, and R. S. Emery. 1990. A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J. Anim. Sci. 68:1395-1399.
  32. Reddy, J. K. and M. S. Rao. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852-G858.
  33. Rubic, T., M. Trottmann, and R. L. Lorenz. 2004. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP binding cassette A1 in monocytoid cells by niacin. Biochem. Pharmacol. 67:411-419.
  34. Ruzzin, J., R. Petersen, E. Meugnier, L. Madsen, E. J. Lock, H. Lillefosse, T. Ma, S. Pesenti, S. B. Sonne, T. T. Marstrand, and M. K. Malde et al. 2010. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ. Health Perspect. 118:465-471.
  35. Salhanick, A. I., S. I. Schwartz, J. M. Amatruda. 1991. Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism 40:275-279.
  36. Saltiel, A. R. and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.
  37. Simon, J., P. Freychet, and G. Rosselin. 1974. Chicken insulin: radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes. Endocrinology 95:1439-1449.
  38. van der Hoorn, J. W., W. de Haan, J. F. Berbee, L. M. Havekes, J. W. Jukema, P. C. Rensen, and H. M. Princen. 2008. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE* 3Leiden. CETP mice. Arterioscler Thromb. Vasc. Biol. 28:2016-2022.
  39. Weibel, E. R. and R. P. Bolender. 1973. Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy (Ed. M. A. Hayat). Van Nostrand Rheinhold Company, New York, pp. 237-296.
  40. Wise, A., S. M. Foord, N. J. Fraser, A. A. Barnes, N. Elshourbagy, M. Eilert, D. M. Ignar, P. R. Murdock, K. Steplewski, and A. Green et al. 2003. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278:9869-9874.
  41. Xu, A., Y. Wang, H. Keshaw, L. Y. Xu, K. S. Lam, and G. J.Cooper. 2003. The fat-derived hormone adiponectin alleviatesalcoholic and nonalcoholic fatty liver diseases in mice. J. Clin.Invest. 112:91-100.
  42. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara,Y. Mori, T. Ide, K. Murakami, and N. Tsuboyama-Kasaoka etal. 2001. The fat-derived hormone adiponectin reverses insulinresistance associated with both lipoatrophy and obesity. Nat.Med. 7:941-946.

Cited by

  1. Effect of dietary copper addition on lipid metabolism in rabbits vol.61, pp.1, 2017,


Supported by : China Postdoctoral Science Foundation