DOI QR코드

DOI QR Code

Photoelectron spectro-microscopy/Scanning photoelectron microscopy (SPEM)

광전자 분광현미경학

  • Published : 2016.12.30

Abstract

The need of space-resolved x-ray photoelectron spectroscopy (XPS) has developed scanning photoelectron microscopy (SPEM). SPEM provides space-resolved XPS data from a spot of a sample as well as images of specific element, chemical state, valency distribution on the surface of a sample. Based on technical advancement of tight x-ray focusing, sample positioning accuracy, and electron analyzer efficiency, SPEM is now capable of providing ~100 nm space resolution for typical XPS functionality, and SPEM has become actively applied for the investigation of chemical state, valency, and electronic structure on the surface of newly discovered materials, such as graphene layers, dichalcogenide 2D-materials, and heterogenous new functional materials.

Keywords

Acknowledgement

Supported by : 극미세 초고속 X-선 과학연구센터 (Center for Advanced X-ray Science)

References

  1. S. Hufner, Photoelectron Spectroscopy, Solid-State Sciences Vol. 82 (Springer-Verlag, Berlin, 1995).
  2. M. Kiskinova, M. Marsi, E. D. Fabrizio, and M. Gentili, "Synchrotron Radiation Scanning Photoemission Microscopy: Instrumentation and Application in Surface Science", Surface Review and Letters 6, 265-286 (1999). https://doi.org/10.1142/S0218625X99000287
  3. J. S. Kang, G. Kim, S. C. Wi, S. S. Lee, S. Choi, Sunglae Cho, S. W. Han, K. H. Kim, H. J. Song, H. J. Shin, A. Sekiyama, S. Kasai, S. Suga, and B. I. Min, "Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductor", Phys. Rev. Lett. 94, 147202 (2005) https://doi.org/10.1103/PhysRevLett.94.147202
  4. Y. Yi, S. W. Cho, M. Noh, C. N. Whang, K. Jeong, and H. J. Shin, "Characterization of surface chemical states of a thick insulator: Chemical state imaging on MgO surface", Jpn. J. Appl. Phys. 44, 861 (2005) https://doi.org/10.1143/JJAP.44.861
  5. J. Lee, S. Sohn, H. J. Yun, and H. J. Shin, "Degradation studies on organic light emitting device using in situ on-operation method with Scanning Photoelectron Microscopy", Appl. Phys. Lett. 93, 133310 (2008). https://doi.org/10.1063/1.2994668
  6. H. J. Shin, M. C. Jung, J. Chung, K. Kim, J. C. Lee, and S. P. Lee, "Degradation mechanism of organic light-emitting device investigated by scanning photoelectron microscopy coupled with peel-off technique", Appl. Phys. Lett. 89, 063503 (2006), https://doi.org/10.1063/1.2335825
  7. J. Chung, K. H. Kim, J. C. Lee, M. K. Kim, and H. J. Shin, "Spectromicroscopic investigation of polymer light-emitting device degradation", Organic Electronics 9, 869-872 (2008). https://doi.org/10.1016/j.orgel.2008.06.009
  8. Woanseo Park, Jaeyoon Baik, Tae-Young Kim, Kyungjune Cho, Woong-Ki Hong, Hyun-Joon Shin, and Takhee Lee, "Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer $MoS_2$ Synthesized by Chemical Vapor Deposition", ACS Nano, 8 (5), 4961-4968 (2014) https://doi.org/10.1021/nn501019g
  9. Intek Song, Chibeom Park, Misun Hong, Jaeyoon Baik, Hyun-Joon Shin, and Hee Cheul Choi, "Patternable Large-Scale Molybdenium Disulfide Atomic Layers Grown by Gold-Assisted Chemical Vapor Deposition", Angewandte. Chemie. Int. Ed., 53, 1266-1269 (2014) https://doi.org/10.1002/anie.201309474
  10. Weilun Chao, Bruce D. Harteneck, J. Alexander Liddle, Erik H. Anderson & David T. Attwood, "Soft X-ray microscopy at a spatial resolution better than 15 nm", Nature 435, 1210-1213 (2005) https://doi.org/10.1038/nature03719
  11. M. Marsi, L. Casalis, L. Gregoratti, S. Guenther, A. Kolmakov, J. Kovac, D. Lonza, and M. Kiskinova,"ESCA Microscopy at ELETTRA: what it is like to perform spectromicroscopy experiments on a thrid generation synchrotron radiation source", J. Electron Spectrosc. Relat. Phenom. 84, 73 (1997) https://doi.org/10.1016/S0368-2048(97)00010-8
  12. I. H. Hong et al., "Performance of the SRRC scanning photoelectron microscope", Nucl. Instrum. Methods Phys. Res. A 467-468, 905 (2001) https://doi.org/10.1016/S0168-9002(01)00516-2
  13. M. K. Lee and H. J. Shin, "Soft x-ray spectromicroscope at the Pohang Light Source", Rev. Sci. Instrum., 72, 2605-2609 (2001). https://doi.org/10.1063/1.1370563
  14. K. Horiba, Y. Nakamura, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, K. Amemiya, Y. Senba, and H.Ohashi, "Scanning photoelectron microscope for nanoscale three-dimensional spatialresolved electron spectroscopy for chemical analysis", Review of Scientific Instruments 82, 113701 (2011) https://doi.org/10.1063/1.3657156
  15. J. Avila and M. C. Asensio, "First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials", Synchrotron Radiation News, 27, 24-30 (2014).
  16. MAESTRO beamline: http://als.lbl.gov/beamline/7.0.2
  17. H. J. Shin and M. K. Lee, "Nondestructive probe of microstructures covered with a micrometer-thick insulating layer", Appl. Phys. Lett., 79, 1057-1059 (2001) https://doi.org/10.1063/1.1391405
  18. M. C. Jung, H. J. Shin, and J. Chung, "Photoelectron spectrum from a thin organic layer exposed with intense x-rays", J. Appl. Phys. 101, 034907 (2007). https://doi.org/10.1063/1.2433704
  19. M. Marsi, L. Casalis, L. GB. K.Teo, EXAFS: Basic Principles and Data Analysis (Springer, 1986).
  20. Suyeon Cho, Sera Kim, Jung Ho Kim, Jiong Zhao, Jinbong Seok, Dong Hoon Keum, Jaeyoon Baik, Duk-Hyun Choe, K. J. Chang, Kazu Suenaga, Sung Wng Kim, Young Hee Lee, and Heejun Yang, "Phase patterning for ohmic homojunction contact in $MoTe_2$ ", Science 349, 625-628 (2015). https://doi.org/10.1126/science.aab3175
  21. Seongjoon Ahn, Gwangwoo Kim, Pramoda K. Nayak, Seong In Yoon, Hyunseob Lim, Hyun-Joon Shin, and Hyeon Suk Shin*, "Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers", ACS Nano, 10, 8973-8979 (2016) https://doi.org/10.1021/acsnano.6b05042
  22. Andrei Kolmakov, Luca Gregoratti, Maya Kiskinova, and Sebastian Gunther, "Recent Approaches for Bridging the Pressure Gap in Photoelectron Microspectroscopy", Topics in Catalysis 59, 448-468 (2016). https://doi.org/10.1007/s11244-015-0519-1