DOI QR코드

DOI QR Code

Rheological Properties of PAN/DMF Spinning Solutions and Physical Properties of Conducting Carbon Nanofibers Prepared by Electrospinning and Carbonization

PAN/DMF 방사용액의 유변학적 특성과 전기방사와 탄화에 의해 제조된 전도성 탄소나노섬유의 물리적 특성

  • Chae, Dong Wook (Department of Textile Engineering, Kyungpook National University) ;
  • Kwon, Oh Joo (Department of Organic and Nano Engineering, Hanyang University) ;
  • Lee, Eun Jeoung (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kim, Byoung Chul (Department of Organic and Nano Engineering, Hanyang University)
  • 채동욱 (경북대학교 섬유공학과) ;
  • 권오주 (한양대학교 유기나노공학과) ;
  • 이은정 (한양대학교 유기나노공학과) ;
  • 김병철 (한양대학교 유기나노공학과)
  • Received : 2016.08.22
  • Accepted : 2016.09.20
  • Published : 2016.10.31

Abstract

Dynamic rheological properties of polyacrylonitrile (PAN)/dimethylformamide (DMF) solutions were measured at several different temperatures ($25-55^{\circ}C$), and their electrospinning was conducted at corresponding temperatures to prepare PAN precursor fibers. The electrospun fibers were subsequently converted to carbon nanofibers through a carbonization process and their physical properties such as electrical conductivity, morphology and crystal structure were examined with regard to the electrospinning temperature. The dynamic viscosity of PAN/DMF solutions decreased with increasing temperature, exhibiting a lower Newtonian flow region followed by shear thinning. In the Cole-Cole plot, the initial slope decreased with decreasing temperature but a single master curve of constant slope above the inflection point was observed regardless of the temperature. FESEM images showed that the diameter of the PAN precursor fibers and resulting carbon nanofibers decreased as the electrospinning temperature increased. The diffraction peak of carbon nanofiber in the WAXD pattern was shifted from 22 to $24^{\circ}$. Further, Raman spectroscopy showed that the graphitic carbon peak at $1600cm^{-1}$ increased with increasing electrospinning temperature. In addition, the electrical conductivity of the carbon nanofiber increased considerably from 2.95 to 6.15 S/cm with increasing electrospinning temperature from 25 to $55^{\circ}C$.

References

  1. P. P. Tsai, H. Schreuder-Gibson, and P. Gibson, "Different Electrostatic Methods for Making Electret Filters", J. Electrostat., 2002, 54, 333-342. https://doi.org/10.1016/S0304-3886(01)00160-7
  2. L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong, "A Review: Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications", J. Mater. Sci., 2014, 49, 463-480. https://doi.org/10.1007/s10853-013-7705-y
  3. A. Fertala, W. B. Han, and F. K. Ko, "Mapping Critical Sites in Collagen II for Rational Design of Gene-Engineered Proteins for Cell-Supporting Materials", J. Biomed. Mater. Res., 2001, 57, 48-58. https://doi.org/10.1002/1097-4636(200110)57:1<48::AID-JBM1140>3.0.CO;2-S
  4. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, "Electrospun Fiber Mats: Transport Properties", AIChE J., 1999, 45, 190-198. https://doi.org/10.1002/aic.690450116
  5. B. Ding, J. Kim, Y. Miyazaki, and S. Shiratori, "Electrospun Nanofibrous Membranes Coated Quartz Crystal Microbalance as Gas Sensor for $NH_3$ Detection", Sens. Actuators B, 2004, 101, 373-380. https://doi.org/10.1016/j.snb.2004.04.008
  6. B. Zhang, F. Kang, J. Tarascon, and J. Kim, "Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage", Prog. Polym. Sci., 2016, 76, 319-380.
  7. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley, "Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers", Adv. Mater., 2004, 16, 58-63. https://doi.org/10.1002/adma.200305456
  8. J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, "Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments: Electrospun Composite Nanofiber Sheets", J. Am. Chem. Soc., 2004, 126, 15754-15761. https://doi.org/10.1021/ja048648p
  9. P. Heikkila and A. Harlin, "Electrospinning of Polyacrylonitrile (PAN) Solution: Effect of Conductive Additive and Filler on the Process", Express Polym. Lett., 2009, 3, 437-445. https://doi.org/10.3144/expresspolymlett.2009.53
  10. S. I. Song and B. C. Kim, "Characteristic Rheological Features of PVA Solutions in Water-Containing Solvents with Different Hydration States", Polymer, 2004, 45, 2381-2386. https://doi.org/10.1016/j.polymer.2004.01.057
  11. K. H. Lee, I. K. Song, and B. C. Kim, "The Rheological Properties of Poly(vinylidene fluoride-co-hexafluoropropylene) Solutions in Dimethyl Acetamide", Korea-Aust. Rheol. J., 2008, 20, 213-220.
  12. S. H. Park, I. K. Song, and B. C. Kim, "The Rheological Properties of Poly(acrylonitrile)/Cellulose Acetate Blend Solutions in N,N-Dimethyl Formamide", Polymer(Korea), 2009, 33, 384-388.
  13. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, "Electrospinning of Nanofibers", J. Appl. Polym. Sci., 2005, 96, 557-569. https://doi.org/10.1002/app.21481
  14. C. Kim, S. Park, J. Cho, D. Lee, T. Park, W. Lee, and K. Yang, "Raman Spectroscopic Evaluation of Polyacrylonitrile-Based Carbon Nanofibers Prepared by Electrospinning", J. Raman Spectrosc., 2004, 35, 928-933. https://doi.org/10.1002/jrs.1233
  15. S. S. Jeon, S. J. Yang, K. J. Lee, and S. S. Im, "A Facile and Rapid Synthesis of Unsubstituted Polythiophene with High Electrical Conductivity Using Binary Organic Solvents", Polymer, 2010, 51, 4069-4076. https://doi.org/10.1016/j.polymer.2010.07.013
  16. B. C. Kim, S. M. Hong, S. S. Hwang, and K. U. Kim, "A Study on the Ternary Blends of Polyphenylenesulfide, Polysulfone, and Liquid Crystalline Polyesteramide", Polym. Eng. Sci., 1996, 36, 574-582. https://doi.org/10.1002/pen.10444
  17. Y. Eom and B. C. Kim, "Solubility Parameter-Based Analysis of Polyacrylonitrile Solutions in N,N-Dimethyl Formamide and Dimethyl Sulfoxide", Polymer, 2014, 55, 2570-2577. https://doi.org/10.1016/j.polymer.2014.03.047
  18. C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, and M. Endo, "Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of LithiumIon Secondary Batteries", Adv. Funct. Mater., 2006, 16, 2393-2397. https://doi.org/10.1002/adfm.200500911
  19. G. Zou, D. Zhang, C. Dong, H. Li, K. Xiong, L. Fei, and Y. Qian, "Carbon Nanofibers: Synthesis, Characterization, and Electrochemical Properties", Carbon, 2006, 44, 828-832. https://doi.org/10.1016/j.carbon.2005.10.035
  20. D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T. W. Clyne, and G. A. J. Amaratunga, "Characterisation of Carbon Nano-Onions Using Raman Spectroscopy", Chem. Phys. Lett., 2003, 373, 52-56. https://doi.org/10.1016/S0009-2614(03)00523-2
  21. M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero, and I. G. Loscertales, "Filled and Hollow Carbon Nanofibers by Coaxial Electrospinning of Alcell Lignin without Binder Polymers", Adv. Mater., 2007, 19, 4292-4296. https://doi.org/10.1002/adma.200700963