DOI QR코드

DOI QR Code

The Growth of Mugil cephalus, Patinopecten yessoensis and Saccharina japonica in the IMTA System

  • Kim, Young Dae (South East Sea Fisheries Research Institute, NIFS) ;
  • Park, Mi Seon (South East Sea Fisheries Research Institute, NIFS) ;
  • Min, Byung Hwa (Aquaculture Management Division, NIFS) ;
  • kim, Hyung Chul (Marine Environment Research Division, NIFS) ;
  • Lee, Won Chan (Marine Environment Research Division, NIFS) ;
  • Lee, Chu (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, NIFS) ;
  • Kim, Gi Seung (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, NIFS) ;
  • Do, Yong Hyun (South East Sea Fisheries Research Institute, NIFS) ;
  • Yoo, Hyun Il (Seaweed Research Center, NIFS)
  • Received : 2016.10.13
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

In this study, we investigated the growth of striped mullet (Mugil cephalus), Yesso scallop (Patinopecten yessoensis) and kelp (Saccharina japonica) farmed under the IMTA (integrated multi-trophic aquaculture) system developed by national institute of fisheries science (NIFS). The farmed striped mullets grew from an initial length and weight of $152.5{\pm}12.1mm$ and $41.6{\pm}7.8g$ in October 2013 to $154.2{\pm}5.6mm$ and $47.5{\pm}8.6g$ in November, $160.2{\pm}8.7mm$ and $55.9{\pm}9.1g$ in December and $168.4{\pm}9.6mm$ and $58.4{\pm}8.7g$ in January. The fish continued to grow and reached $190.2{\pm}9.4mm$ in length and $87.5{\pm}8.9g$ in weight in April and $256.4{\pm}9.7mm$ and $156.7{\pm}6.7g$ in October 2014. The daily growth rate (DGR) for total fish length was 0.015~0.1 mm/day during the periods of fast growth and attained 0.038~0.1 mm/day during February ~ March. The kelp grew from an initial blade length and wet weight of $1.19{\pm}0.2cm$ and $0.0028{\pm}0.0012g$ in January 2014 to $3.3{\pm}0.8cm$ and $2.5{\pm}0.9g$ in February and $126.5{\pm}11.6cm$ and $107.4{\pm}22.6g$ in March, after which, erosion occurred and slowed the growth. The DGRs for kelp length ranged 0.03~1.9 mm/day in January 2014 and increased to 0.88~1.9 mm/day during March~April. Increasing water temperatures beginning in April lowered the DGR to 0.03 mm/day. Yesso scallops grew from an initial shell length, shell height and wet weight of $11.83{\pm}0.6mm$, $12.68{\pm}0.7mm$ and in September 2013 to $19.9{\pm}2.5mm$, $20.8{\pm}2.6mm$ and $0.9{\pm}0.04g$ in November 2013. They continued to grow to $45.91{\pm}0.71mm$ in shell length, $42.55{\pm}0.8mm$ in shell height and $12.7{\pm}1.3g$ in wet weight by May 2014 and $60.2{\pm}2.51mm$, $554.6{\pm}2.61mm$ and $24{\pm}2.70g$ by October 2014. The DGRs for shell length of Yesso scallop ranged from 0.02 to 0.256 mm/day with higher values of 0.256~0.27 mm/day during November~December 2013 and March~April 2014.

Keywords

IMTA;Aquaculture;Growth characteristics;Environmental pollution

Acknowledgement

Grant : Development for Coast-specific IMTA Technology

Supported by : NIFS

References

  1. Buschmann, A. H., Varela, D. A., Hernandez-Gonzalez, M. C., Huovinen, P., 2008, Opportunities and challenges for the development of an integrated seaweed based aquaculture activity in Chile: Determining the physiological capabilities of Nacrocystis and Gracilaria as biofilters, J. Appl. Phycol., 20, 571-577. https://doi.org/10.1007/s10811-007-9297-x
  2. Chang, J. W., Son, Y. S., 1993, Studies on the orphological haracteristics of Laminaria japonica Areschoug and Laminaria religiosa Miyabe in the coast of Kangwon -Do of Korea, Bull. Nat. Fish. Res. Dev. Agency., 48167177.
  3. Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., Fang, J., 2008, Multitrophic integration for sustainable marine aquaculture, In: Jorgensen SE and Fath BD (Eds.), Ecological Engineering, Encyclopedia of Ecology 5 vols, Elsevier, Oxford, U.K., 2463-2475.
  4. Chopin, T., Yarish, C., 1998, Nutrients or not nutrients? That is the question in seaweed aquaculture and the answer depends on the type and purpose of the aquaculture system, World Aqua., 29, 31-33. https://doi.org/10.1111/j.1749-7345.1998.tb00297.x
  5. Evans, F., Langdon, C. J., 2001, Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions, Aqua., 85, 137-158.
  6. Fei, X. G., 2004, Solving the coastal eutrophication problem by large scale seaweed cultivation, Hydro., 512, 145-151. https://doi.org/10.1023/B:HYDR.0000020320.68331.ce
  7. Galimany, E., Rose, J. M., Dixon, M. S., Wikfors, G. H., 2013, Quantifying feeding behavior of ribbed mussels (Geukensia demissa) in two urban sites(Long island Sound, USA) with different seston characteristics, Estuaries and Coasts, 36(6), 1265-1273. https://doi.org/10.1007/s12237-013-9633-0
  8. Higgins, J. P., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., Savovic, J., Schulz, K. F., Weeks, L., Sterne, J. A. C., 2011, The Cochrane collaboration's tool for assessing risk of bias in randomised trials, British Medi. J., 1-9.
  9. Irisarri, J., Reiriz, M., Lsbarta, U., Cranford, P., Robinson, S., 2015, Availability and utilization of waste fish feed by mussels Mytilus edulis in a commercial integrated multi-aquaculture (IMTA) system: A multi-indicator assessment approach, Eco. indi., 48, 673-686. https://doi.org/10.1016/j.ecolind.2014.09.030
  10. Kellogg, M. L., Cornwell, J. C., Owens, M. S., Paynter, K. T., 2013, Denitrification and nutrient assimilation on a restored oyster reef, Mar. Ecol. Prog. Ser., 480, 1-19. https://doi.org/10.3354/meps10331
  11. Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H., Yarish, C., 2015, Nutrient Bioextraction, In R. A. Meyers (ed.), Ency. of Sus. Sci. and Tech.
  12. Kim, J. K., Kramer, G. P., Yarish, C., 2014, Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in long island sound and the bronx river estuary, Aqua., 433, 148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  13. Kim, J. K., Yarish, C., Pereira, R., 2016, Tolerances to hypo-osmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta), Phycologia, 55(3), 257-264. https://doi.org/10.2216/15-90.1
  14. Kim, Y. D., Hong, J. P., Song, H. I., Jeon, C. Y., Kim, S. K., Son, Y. S., Han, H. K., Kim, D. S., Lim, J. H., Kim, M. R., Gong, Y. G., Kim, D. K., 2007, Growth and maturation of Laminaria japonica transplanted for seaforest construction on barren ground, J. Kor. Fish. Soc., 40(5), 323-331.
  15. Kim, Y. D., Lee, C., Shim, J. M., Kim, M. K., kim, G. S., Choi, J. S., An, W. G., Nam, M. M., 2014b, A study on the growth of Juvenile Patinopecten yessoensis from different aquaculture regions, Korean J. Malacol, 30(4), 321-331. https://doi.org/10.9710/kjm.2014.30.4.321
  16. Kim, Y. D., Park, M. S., Min, B. H., Jeong, S. J., Kim, H. C., Yoo, H. I., Lee, W. C., Choi, J. S., 2014a, A study on growth characteristics of Sargassum fulvellum in the integrated multi-trophic aquaculture (IMTA) system, J. Environ. Sci. Int., 23(10), 1703-1718. https://doi.org/10.5322/JESI.2014.23.10.1703
  17. Lander, T., Barrington, K., Robinson, S., MacDonald, B., Martin, J., 2004, Dynamics of the blue mussel as an extractive organism in an integrated multi-trophic aquaculture system, Bull Aquacult Assoc. Can., 104, 19-28.
  18. Langdon, C., Evans, F., Demetropoulos, C., 2004, An environmentally-sustainable, integrated, co-culture system for dulse and abalone production, Aqua. Eng., 32, 43-56. https://doi.org/10.1016/j.aquaeng.2004.08.002
  19. Mao, Y., Yang, H., Zhou, Y., Ye, N., 2009, Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in north China, J. Appl. Phycol., 21, 649-656. https://doi.org/10.1007/s10811-008-9398-1
  20. MacDonald, B. A., Robinson, S. M. C., Barrington, K. A., 2011, Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi -trophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory, Aqua., 314, 244-251. https://doi.org/10.1016/j.aquaculture.2011.01.045
  21. Naylor, R., Goldburg, R., Primavera, J., Kautsky, N., Beveridge, M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000, Effect of aquaculture on world fish supplies, Nature, 405, 1017-1024. https://doi.org/10.1038/35016500
  22. Nelson, E. J., MacDonald, B. A., Robinson, S. M. C., 2012, The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species, Aqua., 370- 371, 19-25. https://doi.org/10.1016/j.aquaculture.2012.09.029
  23. Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M., Yarish, V., 2004, Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture, Aqua., 231, 361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015
  24. NIFS, 2013, Report for the final evaluation of the NIFS fisheries R&D projects, National Institute Fisheries Science, 555.
  25. Oh, B. S., Lee, J. Y., Park, S. K., Lee, J., Jo, Q. T., 2008, A study on the production of artificial seed and intermediate culture for attached spats of the Chinese stock of a scallop, Patinopecten yessoensis, Korean J. Malacol., 24(2), 153-159.
  26. Parsons, G. J., Dadswell, M. J., 1992, Effect of stocking density on growth, production, and survival of the giant scallop, Placopecten magellanicus, held in intermediate suspension culture in Passamaquoddy Bay, New Brunswick, Aqua., 103, 291-309. https://doi.org/10.1016/0044-8486(92)90173-I
  27. Park, M. S., Min, B. H., Kim, Y. D., Yoo, H. I., 2012, Biofiltration efficiency of Saccharina japonica for integrated multi-trophic aquaculture, KFAS, 45(4), 351-357.
  28. Park, Y. J., Rho, S., Lee, J. Y., 2000, Intermediate culture of the scallop, Patinopecten yessoensis, in the east coast of Korea, J. Aquacult., 13(4), 339-351.
  29. Rose, J. M., Bricker, S. B., Deonarine, S., Ferreira, J. G., Getchis, T., Grant, J., Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H., Yarish, C., 2015, Nutrient Bioextraction, In R. A. Meyers (ed.), Ency. of Sus. Sci. and Tech.
  30. Ryther, J. H., Goldman, J. C., Gifford, C. E., Huguenin, J. E., Wing, A. S., Clarner, J. P., Williams, L. D., Lapointe, B. E., 1975, Physical models of integrated waste recycling-marine polyculture systems, Aqua., 5, 163-177. https://doi.org/10.1016/0044-8486(75)90096-4
  31. Tang, K. X., You, X. P., Lin, y> S., Chen, M. E., Shen, D. Y., Lin, S. B., 2005, A study on bioremediation of eutrophication of mariculture waters by Gracilaria Lemaneiformis, Acta. Ecol. Sin., 25, 3044-3051.
  32. Troell, M., Ronnback, P., Halling, C., Kautsky, N., Buschmann, A., 1999, Ecological engineering in aquaculture: Use of seaweeds for removing nutrients from intensive mariculture, J. Appl. Phycol., 11, 89-97. https://doi.org/10.1023/A:1008070400208
  33. Wang, X., Olsen, L. M., Reitan, K. J., Olsen, Y., 2012, Discharge of nutrient wastes from salmon farms: environmental effects: And potential for integrated multi-trophic aquaculture, Aqua. Environ., Interact 2, 267-283.
  34. Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X., Zhang, F., 2006, Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coasta lwaters of north China, Aqua., 252, 264-276. https://doi.org/10.1016/j.aquaculture.2005.06.046