DOI QR코드

DOI QR Code

Effect of Operational Parameters on the Removal of Microcystis aeruginosa in Electro-flotation Process

  • Lucero, Arpon Jr (Department of Environmental Science, Catholic University of Daegu) ;
  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (DU University College, Daegu University)
  • Received : 2016.10.18
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

Despite the low removal efficiencies reported by previous studies, electro-flotation still stands out among other microalgae removal methods for its economical and environmental benefits. To enhance removal efficiency, the important factors that limit the performance of this method must be investigated. In this study, the possible ways of increasing the removal efficiency of microalgae have been explored by investigating the effects of several important variables in electro-flotation. Eight parameters, namely flotation time, rising time, current density, pH, conductivity, electrode distance, temperature and initial concentration were evaluated using a one-parameter-at-a-time approach. Results revealed that the operational parameters that greatly affected the removal efficiency of microalgae were electro-flotation time, current density, pH, and initial concentration. The effect of conductivity, electrode distance, and temperature on removal efficiency were insignificant. However, they exhibited positive an indirect positive effect on power demand, which is nowadays considered an equally important aspect in the running of a feasible and economically efficient electro-flotation process.

Keywords

Electro-flotation;Microalgae;Power consumption;Removal efficiency;Stainless steel mesh

References

  1. Baierle, F., John, D. K., Souza, M. P., Bjerk, T. R., Moraes, M. S. A., Hoeltz, M., Rohlfes, A. L. B., Camargo, M. E., Corbellini, V. A., Schneider, R. C. S., 2015, Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes, Chem. Eng. J., 267, 274-281. https://doi.org/10.1016/j.cej.2015.01.031
  2. Bennett, A. J. R., Champmen, W. R., Dell, C. C., 1958, Studies in the froth flotation of coal, Third International Coal Preparation Congress, Brussels-Leige, 452-462.
  3. Bratby, J., 2006, Coagulation and flocculation in water and wastewater treatment, Second Edition, IWA Publishing, Seattle, Washington, USA.
  4. Chatsungnoen, T., Chisti, Y., 2016, Harvesting microalgae by flocculation-sedimentation, Algal Res., 13, 271-283. https://doi.org/10.1016/j.algal.2015.12.009
  5. Chen, L., Chen, J., Zhang, X., Xie, P., 2016, A review of reproductive toxicity of microcystins, J. Hazard. Mater., 301, 381-399. https://doi.org/10.1016/j.jhazmat.2015.08.041
  6. Chorus, I., Bartram, J., 1999, Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management, E & FN Spon, an imprint of Routledge, 11 New Fetter Lane, London, EC4P 4EE.
  7. Dittmann, E., Weigand, C., 2006, Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs, Mol. Nutr. Food Res., 50, 1-17. https://doi.org/10.1002/mnfr.200690000
  8. Gao, S., Yang, J. Y., Tian, J., Ma, F., Tu, G., Du, M., 2010, Electro-coagulation-flotation process for algae removal, J. Hazard. Mater., 177, 336-343. https://doi.org/10.1016/j.jhazmat.2009.12.037
  9. Gerde, J. A., Yao, L., Lio, J., Wen, Z., Wang, T., 2014, Microalgae flocculation: Impact of flocculant type, algae species and cell concentration, Algal Res., 3, 30-35. https://doi.org/10.1016/j.algal.2013.11.015
  10. Gorin, K. V., Sergeeva, Y. E., Butylin, V. V., Komova, A. V., Pojidaev, V. M., Badranova, G. U., Shapovalova, A. A., Konova, I, A., Gotovtsev, P. M., 2015, Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae, Bioresour. Technol., 193, 178-184. https://doi.org/10.1016/j.biortech.2015.06.097
  11. Henderson, R. K., Baker, A., Parsons, S. A., Jefferson, B., 2008, Characterization of alogenic organic matter extracted from cyanobacteria, green algae, and diatoms, Water Res., 42, 3435-3445. https://doi.org/10.1016/j.watres.2007.10.032
  12. Keshmirizadeh, E., Yousefi, S., Rofouei, M. K., 2011, An investigation on the new operational parameter effective in Cr(VI) removal efficiency: A study on electrocoagulation by alternating pulse current, J. Hazard. Mater., 190, 119-124. https://doi.org/10.1016/j.jhazmat.2011.03.010
  13. Lee, J. E., Lee, J. K., 2002, Effect of microbubbles and particle size on the particle collection in the column flotation, Korean J. Chem. Eng., 19, 703-710. https://doi.org/10.1007/BF02699321
  14. Li, P., Tsuge, H., 2006, Water treatment by induced air flotation using microbubbles, J. Chem. Eng. Japan, 39, 896-903. https://doi.org/10.1252/jcej.39.896
  15. Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., Sang, M., Zhang, C., 2013, Freshwater microalgae harvested via flocculation induced by pH decrease, Biotechnol. Biofuels, 6(98), 1-11. https://doi.org/10.1186/1754-6834-6-1
  16. Misra, R., Guldhe, A., Singh, P., Rawat, I., Bux, F., 2014, Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: A sustainable approach for biodiesel production, Chem. Eng. J., 255, 327-333. https://doi.org/10.1016/j.cej.2014.06.010
  17. Opu, M. S., 2015, Effect of operating parameters on performance of alkaline water electrolysis, Int. J. Thermal & Environ. Eng., 9, 53-60.
  18. Rai, A. N., 1990, CRC handbook of symbiotic cyano bacteria, CRC-Press, Boca Raton, Florida, 1-264.
  19. Savinell, R. F., Zeller, R. L., Adams, J. A., 1990, Electrochemically active surface area voltammetric charge correlations for ruthenium and iridium dioxide electrodes, J. Electrochem. Soc., 137(2), 489-494. https://doi.org/10.1149/1.2086468
  20. Skulberg, O. M., 1995, Biophotolysis, hydrogen production and algal culture technology, Hydrogen Energy System, NATO ASI Series, 295, 95-110.
  21. Tooming-Klunderud, A., 2007, On the evolution of nonribosomal peptide synthetase gene clusters in cyanobacteria, Ph. D. Dissertation, Department of Molecular Biosciences, University of Oslo, Norway.
  22. Ummalyma, S. B., Mathew, A. K., Pandey, A., Sukumaran, R. K., 2016, Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation, Bioresour. Technol., 213, 216-221. https://doi.org/10.1016/j.biortech.2016.03.114
  23. Vandamme, D., Pontes, S., Goiris, K., Foubert, I., Pinoy, L., Muylaert, K., 2011, Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae, Biotechnol. Bioeng., 108(10), 2320-2329. https://doi.org/10.1002/bit.23199
  24. Vandamme, D., Foubert, I., Muylaert, K., 2013, Flocculation as a low-cost method for harvesting microalgae for bulk biomass production, Trends Biotechnol., 31(4), 233-239. https://doi.org/10.1016/j.tibtech.2012.12.005
  25. Wagner, H., 2012, Influence of temperature on electrical conductivity of diluted aqueous solutions, Power Plant Chem., 14(7), 455-469.
  26. Wu, J., Liu, J., Lin, L., Zhang, C., Li, A., Zhu, Y., Zhang, Y., 2015, Evaluation of several flocculants for flocculating microalgae, Bioresour. Technol., 197, 495-501. https://doi.org/10.1016/j.biortech.2015.08.094
  27. Xiang, C., 2012, Impact factors of harvesting Chlorella autotrophica with electro-flocculation (EF), Biological and Agricultural Engineering Master's Thesis, North Carolina State University, U.S.A.
  28. Zhang, Y., Merrill, M. D., Logan, B. E., 2010, The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells, Int. J. Hydrogen Energy, 35, 12020-12028. https://doi.org/10.1016/j.ijhydene.2010.08.064
  29. Zhou, W., Gao, L., Cheng, W., Chen, L., Wang, J., Wang, H., Zhang, W., Liu, T., 2016, Electro-flotation of Chlorella sp. assisted with flocculant by chitosan, Algal Res., 18, 7-14. https://doi.org/10.1016/j.algal.2016.05.029