DOI QR코드

DOI QR Code

Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM2.5, Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

  • Kwon, Jaymin (California State University, Fresno, Department of Public Health) ;
  • Weisel, Clifford P. (Rutgers University, Environmental and Occupational Health Science Institute, Department of Environmental and Occupational Medicine) ;
  • Morandi, Maria T. (University of Texas, Health Science Center at Houston, School of Public Health) ;
  • Stock, Thomas H. (University of Texas, Health Science Center at Houston, School of Public Health, Epidemiology, Human Genetics & Environmental Sciences) ;
  • Turpin, Barbara (University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Environmental Science and Engineering)
  • Received : 2016.09.26
  • Accepted : 2016.10.10
  • Published : 2016.10.31

Abstract

Concentrations of fine particulate matter ($PM_{2.5}$) and several of its particle constituents measured outside homes in Houston, Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile sources and meteorological factors as the independent variables. $PM_{2.5}$ mass and the concentrations of organic carbon (OC), elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC model in Houston. Area source proximity was not selected for any of the $PM_{2.5}$ constituents' regression models. When the median values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the models for the eleven $PM_{2.5}$ constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the concentrations of the $PM_{2.5}$ constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that localized sources need to be evaluated carefully to understand their potential contributions to $PM_{2.5}$ mass and its particle constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.

Keywords

Environmental monitoring;Exposure modeling;$PM_{2.5}$;OC (organic carbon);EC (elemental carbon);PAHs (polycyclic aromatic hydrocarbons);Proximity;Meteorology

Acknowledgement

Supported by : The Mickey Leland National Urban Air Toxics Research Center (NUATRC), The Health Effects Institute (HEI)

References

  1. Polidori, A., Kwon, J., Turpin, B. J., Weisel, C., 2010, Source proximity and residential outdoor concentrations of $PM_{2.5}$, OC, EC, and PAHs, J. Expo Sci. Environ. Epidemiol., 20, 457-468. https://doi.org/10.1038/jes.2009.39
  2. Ravindra, K., Bencs, L., Wauters, E., de Hoog, J., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., Van Grieken, R., 2006, Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities, Atmos. Environ., 40, 771-785. https://doi.org/10.1016/j.atmosenv.2005.10.011
  3. Rohr, A. C., Wyzga, R. E., 2012, Attributing health effects to individual particulate matter constituents, Atmos. Environ., 62, 130-152. https://doi.org/10.1016/j.atmosenv.2012.07.036
  4. Su, F. C., Mukherjee, B., Batterman, S. 2013, Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data, Environ. Res., 126, 192-203. https://doi.org/10.1016/j.envres.2013.08.005
  5. Turpin, B. J., Saxena, P., Andrews, E., 2000, Measuring and simulating particulate organics in the atmosphere: Problems and prospects, Atmos. Environ., 34, 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  6. Turpin, B. J., Weisel, C. P., Morandi, M., Colome, S., Stock, T., Eisenreich, S., Buckley, B., 2007, Relationships of Indoor, Outdoor, and Personal Air (RIOPA): Part II. Analyses of concentrations of particulate matter species, Res. Rep. Health Eff. Inst., 1-77, Discussion 79-92.
  7. United States Census Bureau, 2012, TIGER Products.
  8. United States Environmental Protection Agency, 2003, Technology transfer network, clearinghouse for inventories and emission factors (TTN CHIEF) for 1999, National emission inventory documentation and data - Final version 3.0.
  9. Weisel, C. P., Zhang, J., Turpin, B. J., Morandi, M. T., Colome, S., Stock, T. H., Spektor, D. M., Korn, L., Winer, A. M., Kwon, J., Meng, Q. Y., Zhang, L., Harrington, R., Liu, W., Reff, A., Lee, J. H., Alimokhtari, S., Mohan, K., Shendell, D., Jones, J., Farrar, L., Maberti, S., Fan, T., 2005, Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses, Res. Rep. Health Eff. Inst., 1-107, Discussion 109-127.
  10. Wittkopp, S., Staimer, N., Tjoa, T., Stinchcombe, T., Daher, N., Schauer, J. J., Shafer, M. M., Sioutas, C., Gillen, D. L., Delfino, R. J., 2016, Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study, J. Expo. Sci. Environ. Epidemiol., 26, 141-149. https://doi.org/10.1038/jes.2014.84
  11. Kwon, J., Weisel, C. P., Morandi, M. T., Stock, T. H., 2016, Source proximity and meteorological effects on residential outdoor VOCs in urban areas: Results from the Houston and Los Angeles RIOPA studies, Sci. Total Environ., 573, 954-964. https://doi.org/10.1016/j.scitotenv.2016.08.186
  12. Larson, T., Gould, T., Simpson, C., Liu, L. J., Claiborn, C., Lewtas, J., 2004, Source apportionment of indoor, outdoor, and personal $PM_{2.5}$ in Seattle, Washington, using positive matrix factorization, J. Air Waste Manag. Assoc., 54, 1175-1187. https://doi.org/10.1080/10473289.2004.10470976
  13. Lawson, S. J., Galbally, I. E., Powell, J. C., Keywood, M. D., Molloy, S. B., Cheng, M., Selleck, P. W., 2011, The effect of proximity to major roads on indoor air quality in typical Australian dwellings, Atmos. Environ., 45, 2252-2259. https://doi.org/10.1016/j.atmosenv.2011.01.024
  14. Meng, Q. Y., Turpin, B. J., Lee, J. H., Polidori, A., Weisel, C. P., Morandi, M., Colome, S., Zhang, J., Stock, T., Winer, A., 2007, How does infiltration behavior modify the composition of ambient $PM_{2.5}$ in indoor spaces? An analysis of RIOPA data, Environ. Sci. Technol., 41, 7315-7321. https://doi.org/10.1021/es070037k
  15. Nadeau, K., McDonald-Hyman, C., Noth, E. M., Pratt, B., Hammond, S. K., Balmes, J., Tager, I., 2010, Ambient air pollution impairs regulatory T-cell function in asthma, J. Allergy Clin. Immunol., 126, 845-852 e810. https://doi.org/10.1016/j.jaci.2010.08.008
  16. Naumova, Y. Y., Eisenreich, S. J., Turpin, B. J., Weisel, C. P., Morandi, M. T., Colome, S. D., Totten, L. A., Stock, T. H., Winer, A. M., Alimokhtari, S., Kwon, J., Shendell, D., Jones, J., Maberti, S., Wall, S. J., 2002, Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the U.S, Environ. Sci. Technol., 36, 2552-2559. https://doi.org/10.1021/es015727h
  17. National Oceanic and Atmospheric Administration, 2012, Air resources laboratory, real-time environmental applications and display (READY) system.
  18. Noth, E. M., Hammond, S. K., Biging, G. S., Tager, I. B., 2011, A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA, Atmos. Environ., 45, 2394-2403. https://doi.org/10.1016/j.atmosenv.2011.02.014
  19. Padula, A. M., Noth, E. M., Hammond, S. K., Lurmann, F. W., Yang, W., Tager, I. B., Shaw, G. M., 2014, Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth, Environ. Res., 135, 221-226. https://doi.org/10.1016/j.envres.2014.09.014
  20. Park, M., Luo, S., Kwon, J., Stock, T. H., Delclos, G., Kim, H., Yun-Chul, H., 2013, Effects of air pollution on asthma hospitalization rates in different age groups in metropolitan cities of Korea, Air Qual. Atmos. Health, 6(3), 543-551. https://doi.org/10.1007/s11869-013-0195-x
  21. Perera, F. P., Li, Z., Whyatt, R., Hoepner, L., Wang, S., Camann, D., Rauh, V., 2009, Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years, Pediatrics, 124, e195-202. https://doi.org/10.1542/peds.2008-3506
  22. Polidori, A., Turpin, B., Meng, Q. Y., Lee, J. H., Weisel, C., Morandi, M., Colome, S., Stock, T., Winer, A., Zhang, J., Kwon, J., Alimokhtari, S., Shendell, D., Jones, J., Farrar, C., Maberti, S., 2006, Fine organic particulate matter dominates indoor-generated $PM_{2.5}$ in RIOPA homes, J. Expo Sci. Environ. Epidemiol., 16, 321-331. https://doi.org/10.1038/sj.jes.7500476
  23. Gale, S. L., Noth, E. M., Mann, J., Balmes, J., Hammond, S. K., Tager, I. B., 2012, Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA, J. Expo. Sci. Environ. Epidemiol., 22, 386-392. https://doi.org/10.1038/jes.2012.29
  24. Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., Sioutas, C., 2014, Chemical characterization and source apportionment of indoor and outdoor fine particulate matter ($PM_{2.5}$) in retirement communities of the Los Angeles Basin, Sci. Total Environ., 490, 528-537. https://doi.org/10.1016/j.scitotenv.2014.05.044
  25. HEI, NUATRC, 2008, Health Effect Institute & National Urban Air Toxics Research Center, Relationships of Indoor, Outdoor, and Personal Air (RIOPA) Database Part 2008, MA.
  26. Hew, K. M., Walker, A. I., Kohli, A., Garcia, M., Syed, A., McDonald-Hyman, C., Noth, E. M., Mann, J. K., Pratt, B., Balmes, J., Hammond, S. K., Eisen, E. A., Nadeau, K. C., 2015, Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells, Clin. Exp. Allergy, 45, 238-248. https://doi.org/10.1111/cea.12377
  27. Hodas, N., Meng, Q., Lunden, M. M., Rich, D. Q., Ozkaynak, H., Baxter, L. K., Zhang, Q., Turpin, B. J., 2012, Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates, J. Expo. Sci. Environ. Epidemiol., 22, 448-454. https://doi.org/10.1038/jes.2012.34
  28. Hudda, N., Fruin, S. A., 2016, International airport impacts to air quality: Size and related properties of large increases in ultrafine particle number concentrations, Environ. Sci. Technol., 50, 3362-3370. https://doi.org/10.1021/acs.est.5b05313
  29. Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., Wilson, J., 2005, Organic aerosol and global climate modelling: A review, Atmos. Chem. Phys., 5, 1053-1123. https://doi.org/10.5194/acp-5-1053-2005
  30. Kelly, F. J., Fussell, J. C., 2012, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter, Atmos. Environ., 60, 504-526. https://doi.org/10.1016/j.atmosenv.2012.06.039
  31. Kim, Y., Seo, Y. K., Baek, S. O., 2013, A statistical inference for concentrations of benzo[a]pyrene partially measured in the ambient air of an industrial city in Korea, Atmos. Environ., 81, 92-101. https://doi.org/10.1016/j.atmosenv.2013.08.056
  32. Kwon, J., Weisel, C. P., Turpin, B. J., Zhang, J., Korn, L. R., Morandi, M. T., Stock, T. H., Colome, S., 2006, Source proximity and outdoor-residential VOC concentrations: Results from the RIOPA study, Environ. Sci. & Technol., 40, 4074-4082. https://doi.org/10.1021/es051828u
  33. Akyuz, M., Cabuk, H., 2009, Meteorological variations of $PM_{2.5}$/$PM_{10}$ concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey, J. Hazard. Mater., 170, 13-21. https://doi.org/10.1016/j.jhazmat.2009.05.029
  34. Anastasopoulos, A. T., Wheeler, A. J., Karman, D., Kulka, R. H., 2012, Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and $PM_{2.5}$, Atmos. Environ., 59, 272-283. https://doi.org/10.1016/j.atmosenv.2012.05.004
  35. Baxter, L. K., Barzyk, T. M., Vette, A. F., Croghan, C., Williams, R. W., 2008, Contributions of diesel truck emissions to indoor elemental carbon concentrations in homes in proximity to Ambassador Bridge, Atmos. Environ., 42, 9080-9086. https://doi.org/10.1016/j.atmosenv.2008.09.023
  36. Fuller, C. H., Brugge, D., Williams, P. L., Mittleman, M. A., Lane, K., Durant, J. L., Spengler, J. D., 2013, Indoor and outdoor measurements of particle number concentration in near-highway homes, J. Expo. Sci. Environ. Epidemiol., 23, 506-512. https://doi.org/10.1038/jes.2012.116