Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation

재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화

  • Received : 2016.02.22
  • Accepted : 2016.07.15
  • Published : 2016.08.31


The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.

본 연구에서는 안료폐수 중에 포함되어 있는 유기물질과 질소를 처리함으로써 재순환방식을 이용한 튜브형 전해모듈시스템의 적용 가능성을 평가하였다. 튜브형 전해모듈은 내부 봉형 양극과 외부 튜브형 음극으로 이루어져있다. 양극의 재질은 $RuO_2$로 전착된 티타늄이었고 음극의 재질은 스테인리스 스틸이었다. 재순환형 튜브형 전해모듈시스템에서 오염물질의 제거율은 유량이 감소할수록 그리고 전류밀도가 증가할수록 높아졌다. 전해모듈시스템에서 체류시간이 180분일 때 염소산이온의 농도는 382.4~519.6 mg/L로 나타났다. 본 연구에서 사용한 재순환방식을 이용한 튜브형 전해모듈시스템에서 염소산이온의 생성은 전기화학적 산화의 중요한 인자 중의 하나이다. Bench scale의 재순환방식 튜브형 전해모듈시스템에서 전력량을 $4,500C/dm^2$으로 공급하였을 경우 $COD_{Mn}$은 89.6%, $COD_{Cr}$은 67.8%, T-N은 96.8% 그리고 색도는 74.2%가 제거되었으며, 이때 에너지 소모량은 $5.18kWh/m^3$이었다.



  1. Yao, P., Chen, X., Wu, H. and Wang, D., "Active $Ti/SnO_2$ anodes for pollutants oxidation prepared using chemical vapor deposition," Surf. & Coat. Technol., 202(16), 3580-3855 (2008).
  2. Goyal, R. N., Gupta, V. K. and Chatterjee, S., "Electrochemical oxidation of 2',3'-dideoxyadenosine at pyrolytic graphite electrode," Electrochim. Acta, 53(16), 5354-5360 (2008).
  3. Moran, E., Cattaneo, C., Mishiman H., Lopez de Mishima, B. A., Silvetti, S. P., Rodriguez J. L. and Pastor, E., "Ammonia oxidation on electro deposited Py-Ir alloys," J. Solid State Electrochem., 12, 583-589(2008).
  4. Yu, J. and Kupferle, M. J., "Two-stage sequential electrochemical treatment of nitrate brine wastes," Water Air Soil Pollut., 8(3-4), 379-385(2008).
  5. Tran, N., Drogui, P., Blais, J. F. and Mercier, G., "Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment," Sep. Purifi. Technol., 95, 16-25(2012).
  6. Emamjomeh, M. and Sivakumar, M., "Fluoride removal by a continuous flow electrocoagulation reactor," J. Environ. Manage., 90(2), 1204-1212(2009).
  7. Aji, B. A., Yavuz, Y. and Koparal, A. S., "Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes," Sep. Purifi. Technol., 86, 248-254(2012).
  8. Brillas, E., Calpe, J. C. and Casado, J., "Mineralization of 2, 4-D by advanced electrochemical oxidation processes," Water Res., 34(8), 2253-2262(2000).
  9. Dziewinski, J., Marczak, S., Nuttall, E. and Smith, W., "Electrochemical treatment of mixed and hazardous wastes," Mat. Res. Soc. Sypm. Proc., 412, 509-516(1996).
  10. Chiang, L. C., Chang, J. E. and Wen, T. C., "Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate," Water Res., 29(2), 671-678(1995).
  11. Goodridge, F. and Scott, K., Electrochemical Process Engineering - A Guide to the Design of Electrolytic Plant, Plenum press(1995).
  12. Chen, G., "Electrochemical technologies in wastewater treatment," Sep. Purifi. Technol., 38, 11-41(2004).
  13. Jeong, J. S. and Lee, J. B., "Removal of organic matters from pigment wastewater by electrochemical oxidation," J. Korean Soc. Environ. Eng., 24(9), 1641-1650(2002).
  14. Lee, J. B. and Jeong, J. S., "Electrochemical oxidation of industrial wastewater with the tube type electrolysis module system," in proceedings of the 6th international conference on sustainable water environment, University of Delaware, USA, p. 31(2010).
  15. Korbahti, B. K. and Tanyolac, A., "Continuous electrochemical treatment of phenolic wastewater in a tubular reactor," Water Res., 37, 1505-1514(2003).
  16. Iniesta, J., Gonzalez-garcia, J., Exposito, E., Montiel, V. and Aldaz, A., "Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure $PbO_2$ anodes," Water Res., 35(14), 3291-3300(2001).
  17. Fenyun, Y., Shnixia, C. and Chan'e, Y., "Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater," J. Hazard. Mater., 157, 79-87(2008).
  18. Bergmann, H. and Koparal, S., "The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection," Electrochem. Acta, 50, 5218-5228(2005).
  19. Fukatsu, K. and Kokot, S., "Degradation of poly (ethylene oxide) by electro-generated active species in aqueous halide medium," Polym. Degrad. Stability, 72, 353-359(2001).
  20. Marco, P. and Giacomo, C., "Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation," J. Hazard. Mater., 153, 83-88(2008).