DOI QR코드

DOI QR Code

Influence of Cation Part of Ionic Liquids on Silver Particle Structure

이온성액체의 양이온이 은 입자 구조 형성에 미치는 영향

  • Yun, Mi Hee (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 윤미희 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2016.08.29
  • Accepted : 2016.09.04
  • Published : 2016.10.10

Abstract

Silver particles were synthesized by chemical reduction with ionic liquids. Structure of silver particles were significantly affected by the cation parts of the ionic liquids. With increasing the length of the cation part, the smaller silver particles were formed regardless of the anion type. This is mainly attributed to the different stability of the ionic liquid structure formed by physical bond between cation parts. Among seven ionic liquids, [Omim][$PF_6$] was the most effective for synthesizing silver particles.

References

  1. K. Mallick, M. J. Witcom, and M. S. Scurrell, Self-assembly of silver nanoparticles: Formation of a thin silver film in a polymer matrix, Mater. Sci. Eng. C, 26, 87-91 (2006). https://doi.org/10.1016/j.msec.2005.06.004
  2. S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice, Langmuir, 17, 1571-1575 (2001). https://doi.org/10.1021/la001239w
  3. A. Manna, T. Imae, M. Iida, and N. Hisamatsu, Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex, Langmuir, 17, 6000-6004 (2001). https://doi.org/10.1021/la010389j
  4. Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298, 2176-2179 (2002). https://doi.org/10.1126/science.1077229
  5. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schats, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc., 124, 15182-15183 (2002). https://doi.org/10.1021/ja028336r
  6. M. Maillard, S. Gieorgio, and M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties, J. Phys. Chem. B, 107, 2466-2470 (2003). https://doi.org/10.1021/jp022357q
  7. N. Vigneshwaran, R. P. Nachane, and R. H. Balasubramanya, A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch, Carbohydr. Res., 341, 2012-2018 (2006). https://doi.org/10.1016/j.carres.2006.04.042
  8. T. Torimoto, T. Tsuda, K. Okazaki, and S. Kuwabata, New frontiers in materials science opened by ionic liquids, Adv. Mater., 22, 1196-1221 (2010). https://doi.org/10.1002/adma.200902184
  9. C. W. Scheeren, G. Machado, S. R. Teixeira, J. Morais, J. B. Domingos, and J. Dupont, Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids, J. Phys. Chem. B, 110, 13011-13020 (2006). https://doi.org/10.1021/jp0623037
  10. G. S. Fonseca, G. Machado, S. R. Teixeira, G. H. Fecher, J. Morais, M. C. M. Alves, and J. Dupont, Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids, J. Colloid Interf. Sci., 301, 193-204 (2006). https://doi.org/10.1016/j.jcis.2006.04.073
  11. P. Wasserscheid and W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3772-3789 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  12. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2084 (1999). https://doi.org/10.1021/cr980032t
  13. H. S. Schrekker, M. A. Gelesky, M. P. Stracke, C. M. L. Schrekker, G. Machado, S. R. Teixeira, J. C. Rubim, and J. Dupont, Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles, J. Colloid Interf. Sci., 316, 189-195 (2007). https://doi.org/10.1016/j.jcis.2007.08.018