Photocatalytic Dye Decomposition Effect of Binary Copper (I) Selenide-graphene Nanocomposites Synthesized with Facile Microwave-assisted Technique

용이한 마이크로웨이브 조사법을 사용하여 합성한 이원계 Cu (I) 셀렌 그래핀 나노복합체의 광촉매 염료분해 효과

  • Ali, Asghar (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2016.07.07
  • Accepted : 2016.08.05
  • Published : 2016.10.10


Here, we examined the photo-degradation efficiency of $Cu_2Se$-graphene nanocomposites synthesized by a facile and fast microwave-assisted technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, XPS and UV-Vis spectrophotometry. The photocatalytic performance was studied through the decomposition of Rhodamine (Rh B) as a standard dye under visible light radiation. A 95% of Rh B degradation after visible light irradiation for 180 min indicates that the $Cu_2Se$-graphene composite exhibited significant photodegradation efficiency. Therefore, it can be concluded that the synthesized $Cu_2Se$-graphene can be used as a suitable catalyst for decomposing dye pollutants.


  1. H. Kyung, J. Lee, and W. Choi, Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous $TiO_2$ suspensions under visible-light illumination, Environ. Sci. Technol., 39(7), 2376-2382 (2005).
  2. R. Vinu and G. Madras, Photocatalytic activity of Ag-substituted and impregnated nano-$TiO_2$, Appl. Catal. A, 366(1), 130-140 (2009).
  3. A. R. Ghadim, S. Aber, A. Olad, and H. ASorkhabi, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chem. Eng. Process., 64, 68-78 (2013).
  4. M. Anas, D. S. Han, K. Mahmoud, H. Park, and A. A. Wahab, Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition, Mater. Sci. Semicond. Process., 41, 209-218 (2016).
  5. H. P. Carvalho, J. Huang, M. Zhao, G. Liu, L. Dong, and X. Liu, Improvement of Methylene Blue removal by electrocoagulation/ banana peel adsorption coupling in a batch system, Alex. Eng. J., 54(3), 777-786 (2015).
  6. G. G. Bessegato, J. C. Cardoso, B. F. da Silva, and M. V. Boldrin Zanoni, Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization, Appl. Catal. B, 180, 161-168 (2016).
  7. B. M. Esteves, C. D Rodrigues, R. Boaventura, F. M. Hodar, and L. M. Madeira, Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor, J. Environ. Manag., 166, 193-203 (2016).
  8. K. Shakir, A. F. Elkafrawy, H. F. Ghoneimy, S. G. Beheir, and M. Refaat, Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water Res., 44(5), 1449-1461 (2010).
  9. Z. D. Meng and W. C. Oh, Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/$TiO_2$ composite with different ultrasonic intensity, Ultrason. Sonochem., 18(3), 757-764 (2011).
  10. M. Sun, Y. Fang, Y. Wang, S. Sun, J. He, and Z. Yan, Synthesis of $Cu_2O$/graphene/rutile $TiO_2$ nanorod ternary composites with enhanced photocatalytic activity, J. Alloys Compd., 650, 520-527 (2015).
  11. Y. Leng, Y. Gao, W. Wang, and Y. Zhao, Continuous supercritical solvothermal synthesis of $TiO_2$-pristine-graphene hybrid as the enhanced photocatalyst, J. Supercrit. Fluids, 103, 115-121 (2015).
  12. M. A Rauf and S. S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151(1), 10-18 (2009).
  13. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, and M. Shanthi, Synthesis, characterization and catalytic activity of co-doped Ag-Au-ZnO for MB dye degradation under UV-A light, Mater. Sci. Semicond. Process., 22, 83-91 (2014).
  14. S. Rtimi, C. Pulgarin, R. Sanjines, and J. Kiwi, Kinetics and mechanism for transparent polyethylene-$TiO_2$ films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation, Appl. Catal. B, 162, 236-244 (2015).
  15. N. D. Phu, L. H. Hoang, X. Chen, M. Hong Kong, H. C. Wen, and W. C. Chou, Study of photocatalytic activities of $Bi_2WO_6$ nanoparticles synthesized by fast microwave-assisted method, J. Alloys Compd., 647, 123-128 (2015).
  16. J. Zhang, L. J. Xu, Z. Q. Zhu, and Q. J. Liu, Synthesis and properties of (Yb, N)-$TiO_2$ photocatalyst for degradation of methylene blue (MB) under visible light irradiation, Mater. Res. Bull., 70, 358-364 (2015).
  17. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, and Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere, 144, 1530-1535 (2016).
  18. Y. Cao, X. Gu, H. Yu, W. Zeng, Xi. Liu, S. Jiang, and Y. Li, Degradation of organic dyes by $Si/SiO_x$ core-shell nanowires: Spontaneous generation of superoxides without light irradiation, Chemosphere, 144, 836-841 (2016).
  19. D. Das and R. K. Dutta, A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation, J. Colloid Interface Sci., 457, 339-344 (2015).
  20. N. K. R. Bogireddy, H. A. K. Kumar, and B. K. Mandal, Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes, J. Environ. Chem. Eng., 4(1), 56-64 (2016).
  21. K. Mahesh and D. H. Kuo, Synthesis of Ni nanoparticles decorated $SiO_2/TiO_2$ magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye, Appl. Surf. Sci., 357, 433-438 (2015).
  22. A. Jagminas, R. Juskenas, I. Gailiute, G. Statkute, and R. Tomasiunas, Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores, J. Cryst. Growth, 294(2), 343-348 (2006).
  23. T. D. T. Ung and Q. L. Nguyen, Synthesis, structural and photocatalytic characteristics of $nano-Cu_{2-x}Se$, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(4), 045003 (2011).
  24. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110(1), 132-145 (2009).
  25. A. Konstantin Geim, Graphene: status and prospects, Science, 324(5934), 1530-1534 (2009).
  26. Y.-K. Seo, G. Hundal, I. T. Jang, Y. K. Hwang, C.-H. Jun, and J.-S. Chang, Microwave synthesis of hybrid inorganic-organic materials including porous $Cu_3(BTC)_2$ from Cu(II)-trimesate mixture Microporous, Mesoporous Mater., 119, 331-337 (2009).
  27. K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, and W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal- organic frameworks for imaging and drug delivery, J. Am. Chem. Soc., 131, 14261-14263 (2009).
  28. N. A. Khan and S. H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction, Coord. Chem. Rev., 285, 11-23 (2015).
  29. J. S. Choi, W. J. Son, J. Kim, and W.-S. Ahn, Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered, Microporous Mesoporous Mater., 116, 727-731 (2008).
  30. W. L. Liu, L. H. Ye, X. F. Liu, L. M. Yuan, X. L. Lu, and J. X. Jiang, Rapid synthesis of a novel cadmium imidazole-4, 5-dicarboxylate metal-organic framework under microwave-assisted solvothermal condition, Inorg. Chem. Commun, 11, 1250-1252 (2008).
  31. I. Bilecka and M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale, 2, 1358-1374 (2010).
  32. K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, Synthesis of inorganic solids using microwaves, Chem. Mater., 11(4), 882-895 (1999).
  33. M. Rajamathi and R. Seshadri, Curr. Opin, Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions, Solid State Mater. Sci., 6, 337-345 (2002).
  34. S. Komarneni, Nanophase materials by hydrothermal, microwave- hydrothermal and microwave-solvothermal methods, Curr. Sci., 85(12), 1730-1734 (2003).
  35. S. Z. Shi and J.-Y. Hwang, Microwave-assisted wet chemical synthesis: Advantages, significance, and steps to industrialization, J. Miner. Mater. Charact. Eng., 2, 101-110 (2003).
  36. K. Ullah, A. Ali, S. Ye, L. Zhu, and W. C. Oh, Microwave- assisted synthesis of Pt-graphene/$TiO_2$ nanocomposites and their efficiency in assisting hydrogen evolution from water in the presence of sacrificial agents, Sci. Adv. Mater., 7(4), 606-614 (2015).
  37. W. C. Oh and F. J. Zhang, Preparation and characterization of graphene oxide reduced from a mild chemical method, Asian J. Chem., 23(2), 875-879 (2011).
  38. M. L. Chen, C. Y. Park, J. G. Choi, and W. C. Oh, Synthesis of characterization of metal (Pt, Pd and Fe)-graphene composites, J. Korean. Ceram. Soc., 48(2), 147-151 (2011).
  39. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G .Jeffrey Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater., 11(5), 422-425 (2012).
  40. V. M. Glazov, A. S. Pashinkin, and V. A. Fedorov, Phase equilibria in the Cu-Se system, Inorg. Mater., 36(7), 641-652 (2000).
  41. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, Hydrothermal synthesis of graphene-$TiO_2$ nanotube composites with enhanced photocatalytic activity, ACS Catal., 2(6), 949-956 (2012).
  42. B. Pejova, Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects, J. Solid State Chem., 213, 22-31 (2014).
  43. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(5), 51-87 (2009).
  44. Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of $MoS_2$ and graphene as cocatalysts for enhanced photocatalytic $H_2$ production activity of $TiO_2$ nanoparticles, J. Am. Chem. Soc., 134(15), 6575-6578 (2012).
  45. B. Tang, H. Guoxin, and H. Gao, Raman spectroscopic characterization of graphene, Appl. Spectrosc. Rev., 45(5), 369-407 (2010).
  46. T. Ghosh, K. Ullah, V. Nikam, C. Y. Park, Z. D. Meng, and W. C. Oh, The characteristic study and sonocatalytic performance of CdSe-graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions, Ultrason. Sonochem., 20(2), 768-776 (2013).
  47. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'Homme, I. A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett., 8(1), 36-41 (2008).
  48. S. C. Riha, D. C. Johnson, and A. L. Prieto, $Cu_2Se$ nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction, J. Am. Chem. Soc., 133(5), 1383-1390 (2010).
  49. W. Fan, Q. Zhang, and Y. Wang Semiconductor-based nanocomposites for photocatalytic $H_2$ production and $CO_2$ conversion, Phys. Chem. Chem. Phys., 15, 2632-2649 (2013).
  50. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. I, Petridis, and I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 18, 2740-2749 (2006).
  51. H. K. Jeong, H. J. Noh, J. Y, Kim, M. H. Jin, C. Y. Park, and Y. H. Lee, X-ray absorption spectroscopy of graphite oxide, Europhys. Lett., 82, 67004-67005 (2008).
  52. X. Chen, S. Shen, L. Guo, and S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chem. Rev., 210, 6503-6570 (2010).
  53. D. Cahen, P. J. Ireland, L. L. Kazmerski, and F. A. Thiel, X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $CuInSe_2$ photoelectrodes, J. Appl. Phys., 5, 4761-4771 (1985).
  54. J. Kyriakopoulos, M. D. Tzirakis, G. D. Panagiotou, M. N. Alberti, K. S. Triantafyllidis, S. Giannakaki, K. Bourikas, C. Kordulis, M. Orfanopoulos, and A. Lycourghiotis, Highly active catalysts for the photooxidation of organic compounds by deposition of [60] fullerene onto the MCM-41 surface: A green approach for the synthesis of fine chemicals, Appl. Chem. B, 117, 36-48 (2012).
  55. Y. Wang, R. Shi, J. Lin, and Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like $C_3N_4$, Energy Environ. Sci., 4(8), 2922-2929 (2011).