DOI QR코드

DOI QR Code

Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites

양극산화 처리에 따른 탄소섬유 표면의 페놀릭 하이드록실 관능기 비율의 증가가 에폭시기지 복합재료의 기계적 계면결합 특성에 미치는 영향

  • Kim, Dong-Kyu (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Kwan-Woo (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology) ;
  • Han, Woong (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology) ;
  • Song, Bhumkeun (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology) ;
  • Oh, Sang-Yub (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology) ;
  • Bang, Yun Hyuk (Hyosung R&DB Labs) ;
  • Kim, Byung-Joo (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
  • 김동규 (한국탄소융합기술원 소재부품실용화본부) ;
  • 김관우 (한국탄소융합기술원 소재부품실용화본부) ;
  • 한웅 (한국탄소융합기술원 소재부품실용화본부) ;
  • 송범근 (한국탄소융합기술원 소재부품실용화본부) ;
  • 오상엽 (한국탄소융합기술원 소재부품실용화본부) ;
  • 방윤혁 (효성 R&DB Labs) ;
  • 김병주 (한국탄소융합기술원 소재부품실용화본부)
  • Received : 2016.06.10
  • Accepted : 2016.08.16
  • Published : 2016.10.10

Abstract

We studied the effects of anodic oxidation treatments of carbon fibers on interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites with various current densities. The surface of treated carbon fibers was characterized by atomic force microscope (AFM), field emission-scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The interlaminar shear strength (ILSS) of the composites was determined by a short beam shear test. This result showed that both the roughness and oxygen group of the carbon fibers surface increased in proportion to the current density. After anodic-oxidation-treated, the ILSS also increased as a function of the current density. In addition, the proportional relationship between ILSS and phenolic hydroxyl group was confirmed. The ILSS of the CF-2.0 sample increased by 4% compared to that of the CF-AS sample, because the anodic oxidation treatment increased the oxygen group and roughness on the carbon fibers surface, which leading to the improvement of the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites. Among these, the phenolic hydroxyl group which has the proportional relationship with ILSS is found to be the most important factor for improving the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites.

Acknowledgement

Grant : 탄소섬유 부직포 발열체를 적용한 농가온실 스마트 설해방지 시스템개발, 라지토우 탄소섬유 생산기술 및 중간재 개발

Supported by : 한국산업기술진흥원

References

  1. M. S. Ha, O. Y. Kwon, and H. S. Choi, Improved electrical conductivity of CFRP by conductive silver nano-particles coating for lightning strike protection, J. Korean Soc. Compos. Mater., 23, 31-36 (2010).
  2. C. A. Mahieux, Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of a carbon-fiber reinforced thermoplastic flywheel, Compos. Struct., 52, 517-521 (2001). https://doi.org/10.1016/S0263-8223(01)00041-1
  3. F. L. Jin and S. J. Park, Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review, Carbon Lett., 16, 67-77 (2015). https://doi.org/10.5714/CL.2015.16.2.067
  4. P. E. Vickers, J. F. Watts, C. Perruchot, and M. M. Chehimi, The surface chemistry and acid-base properties of a PAN-based carbon fibre, Carbon, 38, 675-689 (2000). https://doi.org/10.1016/S0008-6223(99)00137-2
  5. W. Song, A. Gu, G. Liang, and L. Yuan, Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites, J. Appl. Surf. Sci., 257, 4069-4074 (2011). https://doi.org/10.1016/j.apsusc.2010.11.177
  6. B. Xu, X. Wang, and Y. Lu, Surface modification of polyacrylonitrile- based carbon fiber and its interaction with imide, J. Appl. Surf. Sci., 253, 2695-2701 (2006). https://doi.org/10.1016/j.apsusc.2006.05.044
  7. H. Li, H. Liang, F. He, Y. Huang, and Y. Wan, Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites, Surf. Coat. Technol., 203, 1317-1321 (2009). https://doi.org/10.1016/j.surfcoat.2008.10.042
  8. K. M. Lee, S. E. Lee, M. I. Kim, and Y. S. Lee, Mechanical and thermal properties of epoxy composites reinforced fluorinated illite and carbon nanotube, Appl. Chem. Eng., 27, 285-290 (2016). https://doi.org/10.14478/ace.2016.1033
  9. C. W. Moon, G. Jung, S. S. Im, C. W. Nah, and S. J. Park, Effect of anodic oxidation of $H_2SO_4/HNO_3$ ratio for improving interfacial adhesion between carbon fibers and epoxy matrix resins, Polymer(Korea), 37, 61-65 (2013).
  10. H. I. Kim, W. K. Choi, S. Y. Oh, K. H. An, and B. J. Kim, Effects of electrochemical oxidation of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites, Appl. Chem. Eng., 24, 476-482 (2013).
  11. Z. Xu, Y. Huang, C. Zhang, Y. Zhang, and L. Wang, Effect of c-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites, Compos. Sci. Technol., 67, 3261-3270 (2007). https://doi.org/10.1016/j.compscitech.2007.03.038
  12. C. Lu, P. Chen, Q. Yu, Z. Ding, Z. Lin, and W. Li, Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite, J. Appl. Polym. Sci., 106, 1733-1741 (2007). https://doi.org/10.1002/app.26840
  13. L. H. Meng, Z. W. Chen, X. L. Song, Y. X. Liang, Y. D. Huang, and Z. X. Jiang, Influence of high temperature and pressure ammonia solution treatment on interfacial behavior of carbon fiber/epoxy resin composites, J. Appl. Polym. Sci., 113, 3436-3441 (2009). https://doi.org/10.1002/app.30062
  14. J. Gulys, E. Fldes, A. Lzr, and B. Puknszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Compos. A, 32, 353-360 (2001). https://doi.org/10.1016/S1359-835X(00)00123-8
  15. A. Fukunaga, S. Ueda, and M. Magumo, Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibres, J. Mater. Sci., 23, 2851-2854 (1991).
  16. M. Delamar, G. Dsarmot, O. Fagebaume, R. Hitmi, J. Pinsom, and J. M. Savant, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801-807 (1997). https://doi.org/10.1016/S0008-6223(97)00010-9
  17. M. A. Montes-Morn, A. Martnez-Alonso, J. M. D. Tascn, and R. J. Young, Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres, Compos. A, 32, 361-371 (2001). https://doi.org/10.1016/S1359-835X(00)00109-3
  18. S. J. Park and B. J. Kim, Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior, Mater. Sci. Eng. A, 408, 269-273 (2005). https://doi.org/10.1016/j.msea.2005.08.129
  19. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  20. W. Han, W. K. Choi, K. H. An, H. G. Kim, S. J. Kang, and B. J. Kim, Effects of crack resistance properties of ozone-treated carbon fibers-reinforced nylon-6 matrix composites, Appl. Chem. Eng., 24, 363-369 (2013).
  21. W. K. Choi, B. J. Kim, B. G. Min, K. M. Min, and S. J. Park, Effects of sizing treatment of carbon fibers on mechanical interfacial properties of nylon 6 matrix composites, Elastom. Compos., 45, 2-6 (2010).
  22. A. Fukunaga and S. Ueda, Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices, Compos. Sci. Technol., 60, 249-254 (2000). https://doi.org/10.1016/S0266-3538(99)00118-9
  23. S. Yumitori and Y. Nakanishi, Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Compoarison between $H_2SO_4$ and NaOH solutions, Compos. A, 27, 1051-1058 (1996). https://doi.org/10.1016/1359-835X(96)00057-7
  24. S. L. Chuang and N. J. Chu, Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. Appl. Polym. Sci., 41, 373-382 (1990). https://doi.org/10.1002/app.1990.070410129
  25. J. Liu, Y. Tian, Y. Chen, and J. Liang, Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in $(NH_4HCO_3)/(NH_4)_2C_2O_4{\cdot}H_2O$ aqueous compound solution, J. Appl. Surf. Sci., 256, 6199-6204 (2010). https://doi.org/10.1016/j.apsusc.2010.03.141
  26. X. P. Yang, C. Z. Wang, Y. H. Yu, and S. K. Ryu, Improvement of CF/ABS composite Properties by Anodic Oxidation of Pitch based C-Type Carbon Fiber, Carbon Sci., 3, 80-84 (2002).
  27. X. Liu, C. Yang, and Y. Lu, Contrastive study of anodic oxidation on carbon fibers and graphite fibers, J. Appl. Surf. Sci., 258, 4268-4275 (2012). https://doi.org/10.1016/j.apsusc.2011.12.076
  28. Z. Li, J. Wang, Y. Tong, and L. Xu, Anodic oxidation on structural evolution and tensile properties of polyacrylonitrile based carbon fibers with different surface morphology, J. Mater. Sci. Technol., 28, 1123-1129 (2012). https://doi.org/10.1016/S1005-0302(12)60181-9
  29. X. Qian, X. Wang, Q. Ouyang, Y. Chen, and Q. Yan, Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation, J. Appl. Surf. Sci., 259, 238-244 (2012). https://doi.org/10.1016/j.apsusc.2012.07.025
  30. S. J. Park, J. S. Oh, and J. R. Lee, Effect of anodized carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced composites, J. Korean Soc. Compos. Mater., 15, 16-23 (2002).
  31. Z. R. Yue, W. Jiang, L. Wang, S. D. Gardner, and C. U. Pittman Jr., Surface characterization of electrochemically oxidized carbon Fibers, Carbon, 37, 1785-1796 (1999). https://doi.org/10.1016/S0008-6223(99)00047-0