Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings

유기발광다이오드 조명용 유기발광체의 최근 동향

  • Jung, Hyocheol (Department of Chemical Engineering, Kyung Hee University) ;
  • Lee, Hayoon (Department of Chemical Engineering, Kyung Hee University) ;
  • Kang, Seokwoo (Department of Chemical Engineering, Kyung Hee University) ;
  • An, Byeong-Kwan (Department of Chemistry, Catholic University of Korea) ;
  • Yook, Kyoung Soo (Sungkyunkwan University, Department of Chemical Engineering) ;
  • Park, Young-Il (Korea Research Institute Chemical Technology, Research Center for Green Fine Chemicals) ;
  • Kim, Beomjin (Korea Research Institute Chemical Technology, Research Center for Green Fine Chemicals) ;
  • Park, Jongwook (Department of Chemical Engineering, Kyung Hee University)
  • 정효철 (경희대학교 화학공학과) ;
  • 이하윤 (경희대학교 화학공학과) ;
  • 강석우 (경희대학교 화학공학과) ;
  • 안병관 (가톨릭대학교 화학과) ;
  • 육경수 (성균관대학교 화학공학과) ;
  • 박영일 (한국화학연구원 그린정밀화학센터) ;
  • 김범진 (한국화학연구원 그린정밀화학센터) ;
  • 박종욱 (경희대학교 화학공학과)
  • Received : 2016.08.29
  • Accepted : 2016.09.10
  • Published : 2016.10.10


Organic light-emitting diode (OLED) has drawn a lot of attention in academic and industrial fields, which has been successfully commercialized in mobile phones and TV's. In the field of lighting, unlike the existing incandescent or fluorescent lighting, OLED has distinctive qualities such as surface lighting-emission, large-area, lightweight, ultrathin, flexibility in addition to low energy use. This article introduces prominent fluorescent, phosphorescent, and luminescent materials applied to white OLED (WOLED). The understanding and systematic classification of previously studied substances are expected to be greatly helpful for the development of new luminous materials in future.


Supported by : Ministry of Trade, Industry & Energy


  1. C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913-915 (1987).
  2. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997).
  3. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003).
  4. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002).
  5. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004).
  6. C. P. Wang, M. H. Wu, H. W. Lin, H. C. Pan, B. H. Liu, and J. H. Jou, High-efficiency flexible white organic light-emitting diodes, J. Mater. Chem., 20, 6626-6629 (2010).
  7. Y. L. Chang, Y. Song, Z. Wang, M. G. Helander, J. Qiu, L. Chai, Z. Liu, G. D. Scholes, and Z. Lu, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705-712 (2012).
  8. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 459, 234-238 (2009).
  9. M. Thomschke, S. Reineke, B. Lussem, and K. Leo, Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films, Nano Lett., 12, 424-428 (2012).
  10. J. B. Birks, Photophysics of Aromatic Compounds, Wiley, New York (1970).
  11. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048-5051 (2001).
  12. R. J. Holmes, S. R. Forrest, Y. -J. Tung. Y, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Blue organic electrophosphorescence using exothermic host-guest energy transfer, Appl. Phys. Lett., 82, 2422-2424 (2003).
  13. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Confinement of triplet energy on phosphorescent molecules for highly efficient organic blue-light emitting devices, Appl. Phys. Lett., 83, 569-571 (2003).
  14. G. T. Lei, L. D. Wang, L. Duan, J. H. Wang, and Y. Qiu, Highly efficient blue electrophosphorescent devices with a novel host material, Synth. Met., 144, 249-252 (2004).
  15. D. R. Whang, Y. You, S. H. Kim, W. I. Jeong, Y. S. Park, J. J. Kim, and S. Y. Park, A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices, Appl. Phys. Lett., 91, 233501-233501-3 (2007).
  16. H. Fukagawa, W. Watanabe, T. Tsuzuki, and S. Tokito, Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure, Appl. Phys. Lett., 93, 133312-133312-3 (2008).
  17. Y. Agata, H. Shimizu, and J. Kido, Syntheses and properties of novel quarterphenylene-based materials for blue organic light-emitting devices, Chem. Lett., 36, 316-317 (2007).
  18. L. S. Cui, Y. Liu, Q. Li, Z. Q. Jiang, and L. S. Liao, A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes, Org. Electron., 15, 1368-1377 (2014).
  19. T. Tsuboi, H. Murayama, S. J. Yeh, M. F. Wu, and C. T. Chen, Photoluminescence characteristics of blue phosphorescent $Ir^{3+}$ compounds FIrpic and FIrN4 doped in mCP and SimCP, Opt. Mater., 31, 366-371 (2008).
  20. T. Tsuboi, S. W. Liu, M. F. Wu, and C. T. Chen, Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes, Org. Electron., 10, 1372-1377 (2009).
  21. M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, and C. I. Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl) carbazole as the host material, Adv. Mater., 18, 1216-1220 (2006).
  22. M. H. Tsai, T. H. Ke, H. W. Lin, C. C. Wu, S. F. Chiu, F. C. Fang, Y. L. Liao, K. T. Wong, Y. H. Chen, and C. I. Wu, Triphenylsilyl- and trityl-substituted carbazole-based host materials for blue electrophosphorescence, ACS Appl. Mater. Interfaces, 1, 567-574 (2009).
  23. S. H. Kim, J. Jang, S. J. Lee, and J. Y. Lee, Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents, Thin Solid Films, 517, 722-726 (2008).
  24. S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, Phenylcarbazole-based phosphine oxide host materials for high efficiency in deep blue phosphorescent organic light-emitting diodes, Adv. Funct. Mater., 19, 3644-3649 (2009).
  25. H. S. Son, C. W. Seo, and J. Y. Lee, Correlation of the substitution position of diphenylphosphine oxide on phenylcarbazole and device performances of blue phosphorescent organic lightemitting diodes, J. Mater. Chem., 21, 5638-5644 (2011).
  26. S. O. Jeon, S. E. Jang, H. S. Son, and J. Y. Lee, External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes, Adv. Mater., 23, 1436-1441 (2011).
  27. S. H. Jeong and J. Y. Lee, Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes, J. Mater. Chem., 21, 14604-14609 (2011).
  28. S. H. Jeong, C. W. Seo, J. Y. Lee, N. S. Cho, J. K. Kim, and J. H. Yang, Comparison of bipolar hosts and mixed-hosts as host structures for deep blue phosphorescent organic light emitting diodes, Chem. Asia J., 6, 2895-2898 (2011).
  29. R. J. Holmes, B. W. D. Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Efficient, deep-blue organic electroluminescence by guest charge trapping, Appl. Phys. Lett., 83, 3818-3820 (2003).
  30. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices, Chem. Mater., 16, 4743-4747 (2004).
  31. J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, and M. Zhou, Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant, Org. Electron., 14, 2596-2601 (2013).
  32. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim, and Y. H. Kim, Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes, J. Am. Chem. Soc., 135, 14321-14328 (2013).
  33. C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, and C. Yang, High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[d]thiazole ligands, J. Phys. Chem. C, 117, 19134-19141 (2013).
  34. J. H. Jou, Y. X. Lin, S. H. Peng, C. J. Li, Y. M. Yang, C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen, M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li, C. F. Sung, M. J. Lee, and J. P. Hu, Highly efficient yellow organic light emitting diode with a novel wet- and dry-process feasible iridium complex emitter, Adv. Funct. Mater., 24, 555-562 (2014).
  35. S. L. Lai, W. Y. Tong, S. C. F. Kui, M. Y. Chan, C. C. Kwok, and C. M. Che, High efficiency white organic light-emitting devices incorporating yellow phosphorescent platinum(II) complex and composite blue host, Adv. Funct. Mater., 23, 5168-5176 (2013).
  36. G. Cheng, S. C. F. Kui, W. H. Ang, M. Y. Ko, P. K. Chow, C. L. Kwong, C. C. Kwok, C. Ma, X. Guan, K. H. Low, S. J. Su and C. M. Che, Structurally robust phosphorescent [Pt(O^N^C^N)] emitters for high performance organic light-emitting devices with power efficiency up to 126 lm $W^{-1}$ and external quantum efficiency over 20%, Chem. Sci., 5, 4819-4830 (2014).
  37. H. Cao, G. Shan, X. Wen, H. Sun, Z. Su, R. Zhong, W. Xie, P. Lia, and D. Zhua, An orange iridium(III) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes, J. Mater. Chem. C, 1, 7371-7379 (2013).
  38. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, and J. Li, Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes, Adv. Mater., 23, 2823-2827 (2011).
  39. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes, J. Mater. Chem., 22, 1411-1417 (2012).
  40. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar, and A. P. Monkman, Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole- based ligands: synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem., 22, 6419-6428 (2012).
  41. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc., 125, 12971-12979 (2003).
  42. B. S. Du, J. L. Liao, M. H. Huang, C. H. Lin, H. W. Lin, Y. Chi, H. A. Pan, G. L. Fan, K. T. Wong, G. H. Lee, and P. T. Chou, Os(II) based green to red phosphors: A great prospect for solution processed, highly efficient organic light-emitting diodes, Adv. Funct. Mater., 22, 3491-3499 (2012).
  43. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099-5103 (2012).
  44. C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C.S. Lee, and S. T. Lee, Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives, J. Mater. Chem., 20, 1560-1566 (2010).
  45. C. H. Wu, C. H. Chien, F. M. Hsu, P. I. Shih, and C. F. Shu, Efficient non-doped blue light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups, J. Mater. Chem., 19, 1464-1470 (2009).
  46. S. Tao, Y. Zhou, C. S. Lee, S. T. Lee, D. Huang, and X. Zhang, Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives, J. Phys. Chem. C, 112, 14603-14606 (2008).
  47. K. H. Lee, Y. S. Kwon, J. Y. Lee, S. Kang, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, Highly efficient blue organic light-emitting diodes based on 2-(diphenylamino)fluoren-7-ylvinylarene derivatives that bear a tert-butyl group, Chem. Eur. J., 17, 12994-13006 (2011).
  48. K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook, J. Y. Lee, and S. S. Yoon, Molecular engineering of blue fluorescent molecules based on silicon end-capped diphenylaminofluorene derivatives for efficient organic light-emitting materials, Adv. Funct. Mater., 20, 1345-1358 (2010).
  49. Y. M. Jeon, J. Y. Lee, J. W. Kim, C. W. Lee, and M. S. Gong, Deep-blue OLEDs using novel efficient spiro-type dopant materials, Org. Electron., 11, 1844-1852 (2010).
  50. Y. Zou, J. Zou, T. Ye, H. Li, C. Yang, H. Wu, D. Ma, J. Qin, and Y. Cao, Unexpected propeller-like Hexakis fluoren-2-yl)benzene cores for six-arm star-shaped oligofluorenes: Highly efficient deep-blue fluorescent emitters and good hole-transporting materials, Adv. Funct. Mater., 23, 1781-1788 (2013).
  51. K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices, Adv. Funct. Mater., 18, 67-75 (2008).
  52. K. L. Chan, J. P. F. Lim, X. Yang, A. Dodabalapur, G. E. Jabbour, and A. Sellinger, High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold, Chem. Commun., 48, 5106-5108 (2012).
  53. B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He, and X. C. Gao, stable, glassy, and versatile binaphthalene derivatives capable of efficient hole transport, hosting, and deep-blue light emission, Adv. Funct. Mater., 20, 2448-2458 (2010).
  54. C. J. Kuo, T. Y. Li, C. C. Lien, C. H. Liu, F. I. Wu, and M. J. Huang, Bis(phenanthroimidazolyl)bisphenyl derivatives as saturated blue emitters for electroluminescent devices, J. Mater. Chem., 19, 1865-1871 (2009).
  55. Y. Park, J. H. Lee, D. H. Jung, S. H. Liu, Y. H. Lin, L. Y. Chen, C. C. Wu, and J. Park, An aromatic imine group enhances the EL efficiency and carrier transport properties of highly efficient blue emitter for OLEDs, J. Mater. Chem., 20, 5930-5936 (2010).
  56. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen, and R. J. Jeng, Highly efficient carbazole-${\pi}$-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes, Adv. Mater., 20, 3947-3952 (2008).
  57. W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, and Y. Ma, A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater., 22, 2797-2803 (2012).
  58. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu, and Y. Wang, Novel Beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode, Org. Electron., 12, 1914-1919 (2011).
  59. H. Kuma, Y. Jinde, M. Kawamura, H. Yamamoto, T. Arakane, K. Fukuoka, and C. Hosokawa, Highly efficient white OLEDs using RGB fluorescent materials, Proceedings of Society for Information Display. May 20-25, California, USA (2007).
  60. Y. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers, J. Appl. Phys., 106, 044509-044509-7 (2009).
  61. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi, Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a Heptazine derivative, Adv. Mater. 25, 3319-3323 (2013).
  62. Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata, and C. Adachi, Anthraquinone-based intramolecular charge-transfer compounds: Computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence, J. Am. Chem. Soc., 136, 18070-18081 (2014).

Cited by

  1. Small-Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices vol.6, pp.20, 2018,
  2. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices pp.10221336, 2018,