DOI QR코드

DOI QR Code

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell

고분자전해질 연료전지에서 고분자 막의 이온 전도도

  • 황병찬 (순천대학교 화학공학과) ;
  • 정회범 (순천대학교 화학공학과) ;
  • 이무석 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 이동훈 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2016.05.16
  • Accepted : 2016.06.28
  • Published : 2016.10.01

Abstract

The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Keywords

PEMFC;Membrane;Ion conductivity;Water flux;Simulation

Acknowledgement

Supported by : 산업통상자원부

References

  1. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
  2. Karpenko-Jereb, L., Innerwinkler, P., Kelterer, A.M., Sternig, C., Fink, C., Prenninger, P. and Tatschl, R., "A Novel Membrane Transport Model for Polymer Electrolyte Fuel Cell Simulations," Inter. J. of Hydrogen Energy, 39, 7077-7088(2014). https://doi.org/10.1016/j.ijhydene.2014.02.083
  3. Hsu, W. Y. and Gierke, T. D., "Ion Transport and Clustering in Nafion Perfluorinated Membranes," J. Membr. Sci., 13, 307-326 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  4. Fimrite, J., Struchtrup, H. and Djilali, N., "Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework," J. Electrochem Soc., 152, A, 1804-1814(2005). https://doi.org/10.1149/1.1952627
  5. Cwirko, E. H. and Carbonell, R. G., "JA Theoretical Analysis of Donnan Dialysis Across Charged Porous Membranes," J. Membr. Sci., 48, 155-179(1990). https://doi.org/10.1016/0376-7388(90)85003-4
  6. Zabolotsky, V. I. and Nikonenko, V. V., "Effect of Structural Membrane Inhomogeneity on Transport Properties," J. Membr. Sci., 79 181-198(1993). https://doi.org/10.1016/0376-7388(93)85115-D
  7. Berezina, N. P. and Karpenko, L.V., "Percolation Effects in Ion Exchange Materials," Colloid J., 62, 676-684(2000). https://doi.org/10.1023/A:1026670423208
  8. Carnes, B. and Djilali, N., "Analysis of Coupled Proton and Water Transport in a PEM Fuel Cell Using the Binary Friction Membrane Model," Electrochim Acta, 52, 1038-1052(2006). https://doi.org/10.1016/j.electacta.2006.07.006
  9. Berg, P., Promislow, K., Pierre, J., Stumper, J. and Wetton, B., "Water Management in PEM Fuel Cells," J. Electrochem. Soc., 151, A 341-353(2004). https://doi.org/10.1149/1.1641033
  10. Kulikovsky, A. A., "The Effect of Cathodic Water on Performance of a Polymer Electrolyte Fuel Cell," Electrochim Acta, 49, 5187-5196(2004). https://doi.org/10.1016/j.electacta.2004.06.034
  11. Kshitsh, A. Patankar, David, A. Dillard, Scott, W. Case, Michael, W. Ellis, Yeh-Hung, Lai, Michael K. Budinski, Graig S. Gittleman, "Hydrothermal Cahracterization of the Viscoelastic Properties of Gore-Select$^{(R)}$57 Protoen Exchange Membrane," Mech Time-Depend Mater, 12, 211-236(2008).
  12. Ye, X. and Wang, C. Y., "Measurement of Water Transport Properties Through Membrane-electrode Assemblies, I. Membrane," J. of Electrochem. Soc., 154(7), B676-B682(2007). https://doi.org/10.1149/1.2737379
  13. Ju, H. and Wang, C. Y., "Simon Cleghorn, Uwe Beusher, "Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation," J. of Electrochem. Soc., 152(8), A1645-A1653(2005). https://doi.org/10.1149/1.1943591
  14. Springer, T. E., Zawodzinski, T. A. and Gattesfeld, S., "Polymer Electrolyte Fuel Cell Model," J. of Electrochem. Soc., 138(8), 2334-2342(1991). https://doi.org/10.1149/1.2085971
  15. Zawodzinski, T. A., Springer, T. E., Davey, J., Jestel, R., Lopez, C., Valerio, J. and Gottesfeld, S., "A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes," J. Electrochem. Soc. 140, 1981-1985(1993). https://doi.org/10.1149/1.2220749
  16. Cooper, K. R., "Progress Toward Accurate Through-plane Ion Transport Resistance Measurement of Thin Solid Electrolytes," J. Electrochem. Soc., 157, B1731-1739(2010). https://doi.org/10.1149/1.3481561
  17. Jeong, J. J., Shin, Y. C., Lee, M. S., Lee, D. H., Na , I. C.i, Lee, H. and Park, K. P., "Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 51(5), 556-560(2013). https://doi.org/10.9713/kcer.2013.51.5.556
  18. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6