DOI QR코드

DOI QR Code

An Analysis of Relationship Between Word Frequency in Social Network Service Data and Crime Occurences

소셜 네트워크 서비스의 단어 빈도와 범죄 발생과의 관계 분석

  • 김용우 (가톨릭대학교 디지털미디어학과) ;
  • 강행봉 (가톨릭대학교 디지털미디어학부)
  • Received : 2016.08.09
  • Accepted : 2016.08.29
  • Published : 2016.09.30

Abstract

In the past, crime prediction methods utilized previous records to accurately predict crime occurrences. Yet these crime prediction models had difficulty in updating immense data. To enhance the crime prediction methods, some approaches used social network service (SNS) data in crime prediction studies, but the relationship between SNS data and crime records has not been studied thoroughly. Hence, in this paper, we analyze the relationship between SNS data and criminal occurrences in the perspective of crime prediction. Using Latent Dirichlet Allocation (LDA), we extract tweets that included any words regarding criminal occurrences and analyze the changes in tweet frequency according to the crime records. We then calculate the number of tweets including crime related words and investigate accordingly depending on crime occurrences. Our experimental results demonstrate that there is a difference in crime related tweet occurrences when criminal activity occurs. Moreover, our results show that SNS data analysis will be helpful in crime prediction model as there are certain patterns in tweet occurrences before and after the crime.

기존의 범죄 예측 방법들은 범죄 발생을 예측하기 위해 기존 기록을 이용하였다. 그러나 이러한 범죄 예측 모델은 데이터를 갱신하는데 어려움이 있다. 범죄 예측을 향상시키기 위해서 소셜 네트워크 서비스(SNS)를 이용하여 범죄를 예측하는 연구들이 진행되었지만, SNS 데이터와 범죄 기록 사이의 관계에 대한 연구는 미흡하다. 따라서, 본 논문에서는 SNS 데이터와 범죄 발생 사이의 관계를 범죄 예측의 관점에서 분석하였다. 잠재 디리클레 할당(LDA)을 이용하여 범죄 발생과 관련된 단어를 포함하는 트윗을 추출하였고, 범죄 기록에 따른 트윗 빈도의 변화를 분석하였다. 범죄 관련 단어를 포함하는 트윗의 빈도를 계산하고, 범죄 발생에 따라서 트윗 빈도를 분석하였다. 범죄가 발생하였을 때, 범죄와 관련된 트윗의 빈도가 변화하였다. 게다가, 범죄 발생 전후에 트윗 빈도가 특정 패턴을 보이기 때문에 SNS 데이터가 범죄 예측 모델에 도움이 될 것이다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. Eck, S. Chainey, J. Cameron, M. Leitner, and R. Wilson, "Mapping Crime: Understanding Hot Spots," U.S. Department of Justice, 2005.
  2. S. Chainey, L. Tompson, and S. Uhlig, "The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime," Security Journal, Vol.24, No.1-2, pp.4-28, 2008.
  3. I. Van Patten, J. McKeldin-Conor, and D. Cox, "A Microspatial Analysis of Robbery: Prospective Hot Spotting in a Small City," Crime Mapping: A Journal of Research and Practive, Vol.1, No.1, pp.7-32, 2009.
  4. J. Ratcliffe, "Crime Mapping: Spatial and Temporal Challenges," Handbook of Quantitative Criminology, Springer New York, pp.5-24, 2009.
  5. B. Sun and V. Ng, "Lifespan and popularity measurement of online content on social networks," Intelligence and Security Informatics(ISI), pp.379-383, 2011.
  6. X. Wang, M. S. Gerber, and D. E. Brown, "Automatic Crime Prediction Using Events Extracted from Twitter Posts," Social Computing, Behavioral-Cultural Modeling and Prediction, pp.231-238, 2012.
  7. M. Gerber, "Predicting crime using Twitter and kernel density estimation," Decision Support Systems, Vol.61, pp.115-125, 2014. https://doi.org/10.1016/j.dss.2014.02.003
  8. X. Chen, Y. Cho, and S. Jang, "Crime Prediction Using Twitter Sentiment and Weather," Systems and Information Engineering Design Symposium, pp.63-68, 2015.
  9. B. Back, I. Ha, B. Ahn, "An Extraction Method of Sentiment Infromation from Unstructed Big Data on SNS," Korea Multimedia Society, Vol.17, No.6, pp.671-680, 2014. https://doi.org/10.9717/kmms.2014.17.6.671
  10. M. Nam, E. Lee, and H. Shin, "A Method for User Sentiment Classification using Instagram Hashtags," Korea Multimedia Society, Vol.18, No.11, pp.1391-1399, 2015. https://doi.org/10.9717/kmms.2015.18.11.1391
  11. T. Heverin, and L. Zach, "Microblogging for Crisis Communication: Examination of Twitter Use in Response to a 2009 Violent Crisis in the Seattle-Tacoma, Washington Area," ISCRAM, 2010.
  12. C. Williams, "Mapping the fear of crime-a micro-approach in Merton, London," Crime Mapping Case Studies: Practice and Research, 2008.
  13. K. Wang, R. Taylor, "Simulated walks through dangerous alleys: Impacts of features and progress on fear," Journal of Environmental Psychology, Vol.26, No.4, pp.269-283, 2006. https://doi.org/10.1016/j.jenvp.2006.07.006
  14. O. Kounadi, T. Lampoltshammer, E. Groff, I. Sitko, and M. Leitner, "Exploring Twitter to Analyze the Public's Reaction Patterns to Recently Reported Homicides in London," PLOS ONE, Vol.10, No.3, pp.1-15, 2015.
  15. F. Furstenberg, "Public reaction to crime in the streets," The American Scholar, Vol.40, No.4, pp.601-610. 1971.
  16. S. McCord, H. Ratcliffe, M. Garcia, and B. Taylor, "Nonresidential crime attractors and generators elevate perceived neighborhood crime and incivilities," Journal of Research in crime and delinquency, Vol.44, No.3, pp.295-320, 2007. https://doi.org/10.1177/0022427807301676
  17. H. Kang and H. Kang, "A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network," Korea Information Processing Society, Vol.5, No.8, pp.393-400, 2016.
  18. H. Kang and H. Kang, "A New Context-Aware Computing Method for Urban Safety." International Conference on Image Analysis and Processing, pp.298-305, 2015.
  19. A. Crawford and J. Flint, "Urban safety, anti-social behaviour and the night-time economy," Criminology and Criminal Justice, Vol.9, No.4, pp.403-413, 2009. https://doi.org/10.1177/1748895809343390
  20. City of Chicago Data Portal [Internet], https://data.cityofchicago.org/.
  21. D. Blei, L. Carin, and D. Dunson, "Probabilistic topic models," Signal Processing Magazine, Vol.27, No.6, pp.55-65, 2010. https://doi.org/10.1109/MSP.2009.934715
  22. D. Blei, A. Ng, and M. Jordan, "Latent dirichlet allocation," Journal of Machine Learning Research, pp.993-1022, 2003.