DOI QR코드

DOI QR Code

공기주입과 영가철을 이용한 하수슬러지 가용화 연구

Assessment of Sludge Solubilization by Aeration and Zero-valent Iron As a Pre-treatment for Anaerobic Digestion

  • Kim, Yong-Jun (Department of Environmental and Energy Engineering, Anyang University) ;
  • Park, Jin-Kyu (Ecowillplus Co., Ltd.) ;
  • Tameda, Kazuo (Graduate School of Engineering, Fukuoka University) ;
  • Lee, Nam-Hoon (Department of Environmental and Energy Engineering, Anyang University)
  • 투고 : 2016.06.10
  • 심사 : 2016.08.23
  • 발행 : 2016.09.30

초록

영가철과 산소가 반응 시 유기화합물들을 산화시킬 수 있는 활성산화제가 생성되게 된다. 이에 본 연구에서는 이러한 반응기작을 고려하여 슬러지의 가용화를 위한 전처리 방법으로서 영가철과 공기주입의 혼합에 의한 전처리 효과를 평가하였다. 실험결과 슬러지의 가용화를 위해 공기주입만 단독으로 적용하였을 때보다 영가철과 공기주입을 동시에 적용하였을 때 슬러지의 가용화가 더욱 효과적인 것으로 분석되어 영가철의 투입이 슬러지의 가용화 범위를 증가시키는 것으로 나타났다. 또한 영가철과 공기주입 시 암모니아성 질소 농도의 제거율이 34%로 나타난 반면에 단독으로 공기만 주입 시에는 24%로 나타났다. 따라서 영가철과 공기주입에 의한 전처리 방법은 슬러지의 가용화 효율을 향상시킬 수 있으면서 암모니아성 질소로 인한 혐기성 소화의 저해 가능성을 감소시킬 수 있을 것으로 판단된다.

참고문헌

  1. Ministry of Environment, Sewer Statistics (2015).
  2. Ministry of Environment, Sewage Sludge Management Plan (2006).
  3. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P. and Ferrer, I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review", J. Hazard. Mater., 183(1-3), pp. 1-15. (2010). https://doi.org/10.1016/j.jhazmat.2010.06.129
  4. Appels, L., Baeyens, J., Degrve, J. and Dewil, R., "Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge", Prog. Energy Combust. Sci., 34(6), pp. 755-781. (2008). https://doi.org/10.1016/j.pecs.2008.06.002
  5. Ahn, Y. M., Wi, J., Park, J. K., Higuchi, S. and Lee, N. H., "Effects of Pre-Aeration on the Anaerobic Digestion of Sewage Sludge", Environ. Eng. Res, 19(1), pp. 59-66. (2014). https://doi.org/10.4491/eer.2014.19.1.059
  6. Su, L., Shi, X., Guo, G., Zhao, A. and Zhao, Y., "Stabilization of Sewage Sludge in the Presence of Nanoscale Zero-Valent Iron (nZVI): Abatement of Odor and Improvement of Biogas Production", J. Mater. Cycles Waste Manag., 15(4), pp. 461-468. (2013). https://doi.org/10.1007/s10163-013-0150-9
  7. Karri, S., Sierra-Alvarez, R. and Field, J. A., "Zero Valent Iron as an Electron-Donor for Methanogenesis and Sulfate Reduction in Anaerobic Sludge", Biotechnol. Bioeng., 92(7), pp. 810-819. (2005). https://doi.org/10.1002/bit.20623
  8. Liu, Y., Zhang, Y. and Ni, B.-J., "Zero Valent Iron Simultaneously Enhances Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactors", Water Res., 75, pp. 292-300. (2015). https://doi.org/10.1016/j.watres.2015.02.056
  9. Hasegawa, S., Shiota, N., Katsura, K. and Akashi, A., "Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion", Water Sci. Technol., 41(3), pp. 163-169. (2000).
  10. Jhao, J., Wang, D., Li, X., Yang, Q., Chen, H., Zhong, Y. and Zeng, G., "Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge", Water Res., 78, pp. 111-120. (2015). https://doi.org/10.1016/j.watres.2015.04.012
  11. Li, H., Li, C., Liu, W. and Zou, S., "Optimized alkaline pretreatment of sludge before anaerobic digestion", Bioresour. Technol., 123, pp. 189-194. (2012). https://doi.org/10.1016/j.biortech.2012.08.017
  12. Deshai, B., Bernt, L. and Rune, B., "Oxygen Effects in Anaerobic Digestion, Modeling", Identif. Control, 30(4), pp. 191-201. (2009). https://doi.org/10.4173/mic.2009.4.1
  13. Xiao, X., Sheng, G. P., Yang, M. and Yu, H. Q., "A Modeling Approach to Describe ZVI-Based Anaerobic System", Water Res., 47, pp. 6007-6013. (2013). https://doi.org/10.1016/j.watres.2013.07.025
  14. Ahn, Y. M., Wi, J., Park, J. K., Higuchi, S. and Lee, N. H., "Effect of Hydrogen Peroxide Pre-treatment on the Anaerobic Digestion of Sewage Sludge", J. Korea Soc. Waste Manag, 30(8), pp. 915-922. (2013). https://doi.org/10.9786/kswm.2013.30.8.915
  15. Neyens, E., Bayens, J., Dewil, R. and Deheyder, B., "Advanced Sludge Treatment Affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering", J. Hazard. Mater., 106, pp. 83-92. (2003).
  16. Lee, H. S., Lee, H. j., Kim, H. E., Kweon, J. Y., Lee, B. D. and Lee, C. H., "Oxidant Production from Corrosion of Nano-and Microparticulate Zero-Valent Iron in the Presence of Oxygen: A Comparative Study", J. Hazard. Mater., 265, pp. 201-207. (2014). https://doi.org/10.1016/j.jhazmat.2013.11.066
  17. Keenan, C. R. and Sedlak, K. L., "Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen", Environ. Sci. Technol., 42(4), pp. 1262-1267. (2008). https://doi.org/10.1021/es7025664
  18. Kim, H.-H., Lee, H.-J., Kim, H.-E., Lee, H., Lee, B-D. and Lee, C., "Oxidative Degradation of Phenol Using Zero-Valent Iron-Based Fenton-Like Systems", J. Soil Groundw. Environ., 18(4), pp. 50-57. (2013). https://doi.org/10.7857/JSGE.2013.18.4.050
  19. Feng, Y., Zhang, Y., Quan, X. and Chen, S., "Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron", Waste Res., 52, pp. 242-250. (2014).