DOI QR코드

DOI QR Code

Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases

  • Im, Eunju ;
  • Chung, Kwang Chul
  • Received : 2016.06.09
  • Published : 2016.09.30

Abstract

Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs.

Keywords

Assembly;Gate opening;Neurodegenerative diseases;Post-translational modification;Proteasome;Regulators

References

  1. Griffin TA, Nandi D, Cruz M et al (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187, 97-104 https://doi.org/10.1084/jem.187.1.97
  2. Sorokin AV, Kim ER and Ovchinnikov LP (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc) 74, 1411-1442 https://doi.org/10.1134/S000629790913001X
  3. Asano S, Fukuda Y, Beck F et al (2015) Proteasome. A molecular census of 26S proteasomes in intact neurons. Science 347, 439-442 https://doi.org/10.1126/science.1261197
  4. Groll M, Ditzel L, Löwe J et al (1997) Structure of the 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463-471 https://doi.org/10.1038/386463a0
  5. Kulichkova VA, Tsimokha AS, Fedorova OA et al (2010) 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle 9, 840-849 https://doi.org/10.4161/cc.9.4.10829
  6. Mittenberg AG, Moiseeva TN, Kuzyk VO and Barlev NA (2016) Regulation of Endoribonuclease Activity of Alpha-Type Proteasome Subunits in Proerythroleukemia K562 Upon Hemin-Induced Differentiation. Protein J 35, 17-23 https://doi.org/10.1007/s10930-015-9642-x
  7. Qiu XB, Ouyang SY, Li CJ, Miao S, Wang L and Goldberg AL (2006) hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 25, 5742-5753 https://doi.org/10.1038/sj.emboj.7601450
  8. Latham MP, Sekhar A and Kay LE (2014) Understanding the mechanism of proteasome 20S core particle gating. Proc Natl Acad Sci U S A 111, 5532-5537 https://doi.org/10.1073/pnas.1322079111
  9. Fong A, Zhang M, Neely J and Sun SC (2002) S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100. J Biol Chem 277, 40697-40702 https://doi.org/10.1074/jbc.M205330200
  10. Rosenzweig R, Osmulski PA, Gaczynska M and Glickman MH (2008) The central unit within the 29S regulatory particle of the proteasome. Nat Struct Mol Biol 15, 573-580 https://doi.org/10.1038/nsmb.1427
  11. Thrower JS, Hoffman L, Rechsteiner M and Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102 https://doi.org/10.1093/emboj/19.1.94
  12. Sakata E, Bohn S, Mihalache O et al (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci U S A 109, 1479-1484 https://doi.org/10.1073/pnas.1119394109
  13. Glickman MH and Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 373-428 https://doi.org/10.1152/physrev.00027.2001
  14. Verma R, Aravind L, Oania R et al (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615 https://doi.org/10.1126/science.1075898
  15. Dahlmann B (2005) Proteasome. Essays Biochem 41, 31-48 https://doi.org/10.1042/bse0410031
  16. Gao X, Li J, Pratt G, Wilk S and Rechsteiner M (2004) Purification procedures determine the proteasome activation properties of REGγ (PA28γ). Arch Biochem Biophys 425, 158-164 https://doi.org/10.1016/j.abb.2004.03.021
  17. Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T and Hill CP (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell 37, 728-735 https://doi.org/10.1016/j.molcel.2010.02.002
  18. Ustrell V, Hoffman L, Pratt G and Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21, 3516-3525 https://doi.org/10.1093/emboj/cdf333
  19. Panfair D, Ramamurthy A and Kusmierczyk AR (2015) Alpha-ring independent assembly of the 20S proteasome. Sci Rep 5, 13130 https://doi.org/10.1038/srep13130
  20. Sakai N, Sawada MT and Sawada H (2004) Non-traditional roles of ubiquitin-proteasome system in fertilization and gametogenesis. Int J Biochem Cell Biol 36, 776-784 https://doi.org/10.1016/S1357-2725(03)00263-2
  21. Zhou C, Wee S, Rhee E, Naumann M, Dubiel W and Wolf DA (2003) Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol Cell 11, 927-938 https://doi.org/10.1016/S1097-2765(03)00136-9
  22. Murata S, Yashiroda H and Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10, 104-115. https://doi.org/10.1038/nrm2630
  23. Tamura T, Nagy I, Lupas A et al (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5, 766-774 https://doi.org/10.1016/S0960-9822(95)00153-9
  24. Kwon YD, Nagy I, Adams PD, Baumeister W and Jap BK (2004) Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol 335, 233-245 https://doi.org/10.1016/j.jmb.2003.08.029
  25. Hirano Y, Kaneko T, Okamoto K et al (2008) Dissecting β-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27, 2204-2213 https://doi.org/10.1038/emboj.2008.148
  26. Sahara K, Kogleck L, Yashiroda H and Murata S (2014) The mechanism for molecular assembly of the proteasome. Adv Biol Regul 54, 51-58 https://doi.org/10.1016/j.jbior.2013.09.010
  27. Marques AJ, Glanemann C, Ramos PC and Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem 282, 34869-34876 https://doi.org/10.1074/jbc.M705836200
  28. Kock M, Nunes MM, Hemann M et al (2015) Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 6, 6123 https://doi.org/10.1038/ncomms7123
  29. Um JW, Im E, Lee HJ et al (2010) Parkin directly modulates 26S proteasome activity. J Neurosci 30, 11805-11814 https://doi.org/10.1523/JNEUROSCI.2862-09.2010
  30. Bai M, Zhao X, Sahara K et al (2014) Assembly mechanisms of specialized core particles of the proteasome. Biomolecules 4, 662-677 https://doi.org/10.3390/biom4030662
  31. Murata S, Sasaki K, Kishimoto T et al (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349-1353 https://doi.org/10.1126/science.1141915
  32. Park S, Roelofs J, Kim W et al (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866-870 https://doi.org/10.1038/nature08065
  33. Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A and Bertolotti A (2014) An inducible chaperone adapts proteasome assembly to stress. Mol Cell 55, 566-577 https://doi.org/10.1016/j.molcel.2014.06.017
  34. Besche HC, Peth A and Goldberg AL (2009) Getting to first base in proteasome assembly. Cell 138, 25-28 https://doi.org/10.1016/j.cell.2009.06.035
  35. Estrin E, Lopez-Blanco JR, Chacon P and Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21, 1624-1635 https://doi.org/10.1016/j.str.2013.06.023
  36. Tomko RJ Jr, Taylor DW, Chen ZA, Wang HW, Rappsilber J and Hochstrasser M (2015) A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell 163, 432-444 https://doi.org/10.1016/j.cell.2015.09.022
  37. Hu Y, Wu Y, Li Q, Zhang W and Jin C (2015) Solution structure of yeast Rpn9: insights into proteasome lid assembly. J Biol Chem 290, 6878-6889 https://doi.org/10.1074/jbc.M114.626762
  38. Tian G, Park S, Lee MJ et al (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18, 1259-1267 https://doi.org/10.1038/nsmb.2147
  39. Forster A, Masters EI, Whitby FG, Robinson H and Hill CP (2005) The 1.9 A° structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18, 589-599 https://doi.org/10.1016/j.molcel.2005.04.016
  40. Sokolova V, Li F, Polovin G and Park S (2015) Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sci Rep 5, 14909 https://doi.org/10.1038/srep14909
  41. Groll M, Bajorek M, Köhler A et al (2000) A gated channel into the proteasome core particle. Nature Struct Biol 7, 1062-1067 https://doi.org/10.1038/80992
  42. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL and Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30, 360-368 https://doi.org/10.1016/j.molcel.2008.03.004
  43. Dange T, Smith D, Noy T et al (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286, 42830-42839 https://doi.org/10.1074/jbc.M111.300178
  44. Arendt CS and Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18, 3575-3585 https://doi.org/10.1093/emboj/18.13.3575
  45. Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A and Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14, 81-93 https://doi.org/10.1016/S1097-2765(04)00156-X
  46. Jang M, Park BC, Lee AY et al (2007) Caspase-7 mediated cleavage of proteasome subunits during apoptosis. Biochem Biophys Res Commun 363, 388-394 https://doi.org/10.1016/j.bbrc.2007.08.183
  47. Wang XH, Zhang L, Mitch WE, Ledoux JM, Hu J and Du J (2010) Caspase-3 cleaves specific 19S proteasome subunits in skeletal muscle stimulating proteasome activity. J Biol Chem 285, 21249-21257 https://doi.org/10.1074/jbc.M109.041707
  48. Gomes AV, Zong C, Edmondson RD et al (2006) Mapping the murine cardiac 26S proteasome complexes. Circ Res 99, 362-371 https://doi.org/10.1161/01.RES.0000237386.98506.f7
  49. Li D, Dong Q, Tao Q et al (2015) c-Abl regulates proteasome abundance by controlling the ubiquitinproteasomal degradation of PSMA7 subunit. Cell Rep 10, 484-496 https://doi.org/10.1016/j.celrep.2014.12.044
  50. Wang X, Chen CF, Baker PR, Chen PL, Kaiser P and Huang L (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565 https://doi.org/10.1021/bi061994u
  51. Anandan T, Han J, Baun H et al (2014) Phosphorylation regulates mycobacterial proteasome. J Microbiol 52, 743-754 https://doi.org/10.1007/s12275-014-4416-2
  52. Zong C, Gomes AV, Drews O et al (2006) Regulation of murine cardiac 20S proteasomes: role of associating partners. Circ Res 99, 372-380 https://doi.org/10.1161/01.RES.0000237389.40000.02
  53. Bose S, Stratford FL, Broadfoot KI, Mason GG and Rivett AJ (2004) Phosphorylation of 20s proteasome alpha subunit C8 (Alpha7) stabilizes the 26s proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378, 177-184 https://doi.org/10.1042/bj20031122
  54. Kikuchi J, Iwafune Y, Akiyama T et al (2010) Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics 10, 2769-2779 https://doi.org/10.1002/pmic.200900283
  55. Konstantinova IM, Tsimokha AS and Mittenberg AG (2008) Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol 267, 59-124
  56. Um JW, Im E, Park J et al (2010) ASK1 negatively regulates the 26 S proteasome. J Biol Chem 285, 36434-36446 https://doi.org/10.1074/jbc.M110.133777
  57. Guo X, Wang X, Wang Z et al (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18, 202-212 https://doi.org/10.1038/ncb3289
  58. Lokireddy S, Kukushkin NV and Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 112, E7176-7185 https://doi.org/10.1073/pnas.1522332112
  59. Uchiki T, Kim HT, Zhai B et al (2009) The ubiquitininteracting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem 284, 12622-12632 https://doi.org/10.1074/jbc.M900556200
  60. Satoh K, Sasajima H, Nyoumura KI, Yokosawa H and Sawada H (2001) Assembly of the 26S proteasome is regulated by phosphorylation of the P45/Rpt6 ATPase subunit. Biochemistry 40, 314-319 https://doi.org/10.1021/bi001815n
  61. Jarome TJ, Ferrara NC, Kwapis JL and Helmstetter FJ (2016) CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiol Learn Mem 128, 103-109 https://doi.org/10.1016/j.nlm.2016.01.001
  62. Besche HC, Sha Z, Kukushkin NV et al (2014) Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 33, 1159-1176 https://doi.org/10.1002/embj.201386906
  63. Isasa M, Katz EJ, Kim W et al (2010) Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 38, 733-745 https://doi.org/10.1016/j.molcel.2010.05.001
  64. Crosas B, Hanna J, Kirkpatrick DS et al (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413 https://doi.org/10.1016/j.cell.2006.09.051
  65. Schmitt SM, Neslund-Dudas C, Shen M, Cui C, Mitra B and Dou QP (2016) Involvement of ALAD-20S proteasome complexes in ubiquitination and acetylation of proteasomal α2 subunits. J Cell Biochem 117, 144-151 https://doi.org/10.1002/jcb.25259
  66. Cui Z, Scruggs SB, Gilda JE, Ping P and Gomes AV (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 71, 32-42 https://doi.org/10.1016/j.yjmcc.2013.10.008
  67. Manza LL, Codreanu SG, Stamer SL et al (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17, 1706-1715 https://doi.org/10.1021/tx049767l
  68. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ and Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715-725 https://doi.org/10.1016/S0092-8674(03)00974-7
  69. Kimura Y, Takaoka M, Tanaka S et al (2000) Nα-acetylation and proteolytic activity of the yeast 20 S proteasome. J Biol Chem 275, 4635-4639 https://doi.org/10.1074/jbc.275.7.4635
  70. Kimura Y, Saeki Y, Yokosawa H, Polevoda B, Sherman F and Hirano H (2003) N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys 409, 341-348 https://doi.org/10.1016/S0003-9861(02)00639-2
  71. Wang D, Fang C, Zong NC et al (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12, 3793-3802 https://doi.org/10.1074/mcp.M113.028332
  72. Zong C, Young GW, Wang Y et al (2008) Two-dimensional electrophoresis-based characterization of post-translational modifications of mammalian 20S proteasome complexes. Proteomics 8, 5025-5037 https://doi.org/10.1002/pmic.200800387
  73. Overath T, Kuckelkorn U, Henklein P et al (2012) Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 11, 467-477 https://doi.org/10.1074/mcp.M111.015966
  74. Wang Z, Park K, Comer F, Hsieh-Wilson LC, Saudek CD and Hart GW (2009) Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. Diabetes 58, 309-317 https://doi.org/10.2337/db08-0994
  75. Weinert BT, Schölz C, Wagner SA et al (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4, 842-851 https://doi.org/10.1016/j.celrep.2013.07.024
  76. Catalgol B, Wendt B, Grimm S, Breusing N, Ozer NK and Grune T (2010) Chromatin repair after oxidative stress: role of parp-mediated proteasome activation. Free Radic Biol Med 48, 673-680 https://doi.org/10.1016/j.freeradbiomed.2009.12.010
  77. Bulteau AL, Lundberg KC, Humphries KM et al (2001) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 276, 30057-30063 https://doi.org/10.1074/jbc.M100142200
  78. Cho-Park PF and Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153, 614-627 https://doi.org/10.1016/j.cell.2013.03.040
  79. Ishii T, Sakurai T, Usami H and Uchida K (2005) Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26S proteasome. Biochemistry 44, 13893-13901 https://doi.org/10.1021/bi051336u
  80. Divald A, Kivity S and Wang P (2010) Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits. Circ Res 106, 1829-1838 https://doi.org/10.1161/CIRCRESAHA.110.219485
  81. Farout L, Mary J, Vinh J, Szweda LI and Friguet B (2006) Inactivation of the proteasome by 4-hydroxy-2-nonenal is site specific and dependant on 20S proteasome subtypes. Arch Biochem Biophys 453, 135-142 https://doi.org/10.1016/j.abb.2006.02.003
  82. Just J, Jung T, Friis NA et al (2015) Identification of an unstable 4-hydroxynoneal modification on the 20S proteasome subunit α7 by recombinant antibody technology. Free Radic Biol Med 89, 786-792 https://doi.org/10.1016/j.freeradbiomed.2015.10.405
  83. Demasi M, Silva GM and Netto LE (2003) 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J Biol Chem 278, 679-685 https://doi.org/10.1074/jbc.M209282200
  84. Silva GM, Netto LE, Simões V et al (2012) Redox control of 20S proteasome gating. Antioxid Redox Signal 16, 1183-1194 https://doi.org/10.1089/ars.2011.4210
  85. Demasi M, Netto LE, Silva GM et al (2014) Redox regulation of the proteasome via S-glutathionylation. Redox Biol 2, 44-51 https://doi.org/10.1016/j.redox.2013.12.003
  86. Zmijewski JW, Banerjee S and Abraham E (2009) S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function. J Biol Chem 284, 22216-22221 https://doi.org/10.1074/jbc.M109.028902
  87. Myeku N, Clelland CL and Emrani S (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22, 46-53 https://doi.org/10.1038/nm.4011
  88. Keller JN, Hanni KB and Markesbery WR (2000) Impaired proteasome function in Alzheimer's disease. J Neurochem 75, 436-439 https://doi.org/10.1046/j.1471-4159.2000.0750436.x
  89. Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI and Masters CL (2008) Mechanisms of Abeta mediated neurodegeneration in Alzheimer’s disease. Int J Biochem Cell Biol 40, 181-198 https://doi.org/10.1016/j.biocel.2007.07.013
  90. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P and Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through lys-48, lys-11, and lys-6 ubiquitin conjugation. J Biol Chem 281, 10825-10838 https://doi.org/10.1074/jbc.M512786200
  91. McNaught KS, Belizaire R, Isacson O, Jenner P and Olanow CW (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol 179, 38-46 https://doi.org/10.1006/exnr.2002.8050
  92. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A and Wolozin B (2003) Aggregated and monomeric alpha- synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem 278, 11753-11759 https://doi.org/10.1074/jbc.M208641200
  93. Sakata E, Yamaguchi Y, Kurimoto E et al (2003) Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep 4, 301-306 https://doi.org/10.1038/sj.embor.embor764
  94. Caneda-Ferron B, De Girolamo LA, Costa T, Beck KE, Layfield R and Billett EE (2008) Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson's disease aetiology. J Neurochem 105, 225-238 https://doi.org/10.1111/j.1471-4159.2007.05130.x
  95. Kabashi E, Agar JN, Taylor DM, Minotti S and Durham HD (2004) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89, 1325-1335 https://doi.org/10.1111/j.1471-4159.2004.02453.x
  96. Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N and Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342, 184-190 https://doi.org/10.1016/j.bbrc.2006.01.136
  97. Ortega Z, Diaz-Hernandez M and Lucas JJ (2007) Is the ubiquitin-proteasome system impaired in Huntington's disease? Cell Mol Life Sci 64, 2245-2257 https://doi.org/10.1007/s00018-007-7222-8
  98. Jeon J, Kim W, Jang J, Isacson O and Seo H (2016) Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice. Neuroscience 324, 20-28 https://doi.org/10.1016/j.neuroscience.2016.02.054
  99. Andre R and Tabrizi SJ (2012) Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 6, 32-36. https://doi.org/10.4161/pri.6.1.18272
  100. McKinnon C, Goold R, Andre R et al (2016) Prionmediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol 131, 411-425 https://doi.org/10.1007/s00401-015-1508-y

Cited by

  1. Human Telomerase Reverse Transcriptase (hTERT) Positively Regulates 26S Proteasome Activity vol.232, pp.8, 2017, https://doi.org/10.1002/jcp.25607
  2. Regulation of proteasome assembly and activity in health and disease vol.19, pp.11, 2018, https://doi.org/10.1038/s41580-018-0040-z
  3. TOR Facilitates the Targeting of the 19S Proteasome Subcomplex To Enhance Transcription Complex Assembly at the Promoters of the Ribosomal Protein Genes vol.38, pp.14, 2018, https://doi.org/10.1128/MCB.00469-17
  4. Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes vol.26, pp.2, 2019, https://doi.org/10.1038/s41594-018-0179-5

Acknowledgement

Grant : 핵심개인연구

Supported by : 연세대학교