DOI QR코드

DOI QR Code

Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

  • Zhang, Xuemei (Life Science and Technology, Xinjiang University) ;
  • Wang, Liqin (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang) ;
  • Wu, Yangsheng (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang) ;
  • Li, Wenrong (Life Science and Technology, Xinjiang University) ;
  • An, Jing (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang) ;
  • Zhang, Fuchun (Life Science and Technology, Xinjiang University) ;
  • Liu, Mingjun (Life Science and Technology, Xinjiang University)
  • Received : 2016.02.17
  • Accepted : 2016.04.22
  • Published : 2016.10.01

Abstract

Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause "double-muscling" trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

Keywords

Myostatin;Zinc-finger Nucleases;Knockout;Sheep

References

  1. Zhang, C., L. Wang, G. Ren, Z. Li, C. Ren, T. Zhang, K. Xu, and Z. Zhang. 2014. Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases. Mol. Biol. Rep. 41:209-215. https://doi.org/10.1007/s11033-013-2853-3
  2. Chu, X., Z. Zhang, J. Yabut, S. Horwitz, J. Levorse, X. Q. Li, L. Zhu, H. Lederman, R. Ortiga, J. Strauss, X. Li, K. A. Owens, J. Dragovic, T. Vogt, R. Evers, and M. K. Shin. 2012. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol. Pharmacol. 81:220-227. https://doi.org/10.1124/mol.111.074179
  3. Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier, and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818. https://doi.org/10.1038/ng1810
  4. Cui, X., D. Ji, D. A. Fisher, Y. Wu, D. M. Briner, and E. J. Weinstein. 2011. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat. Biotechnol. 29:64-67. https://doi.org/10.1038/nbt.1731
  5. Bibikova, M., M. Golic, K. G. Golic, and D. Carroll. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169-1175.
  6. Boman, I. A., G. Klemetsdal, T. Blichfeldt, O. Nafstad, and D. I. Vage. 2009. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim. Genet. 40:418-422. https://doi.org/10.1111/j.1365-2052.2009.01855.x
  7. Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher. 2008. Heritable targeted gene disruption in zebrafish using designed zincfinger nucleases. Nat. Biotechnol. 26:702-708. https://doi.org/10.1038/nbt1409
  8. Flisikowska, T., I. S. Thorey, S. Offner, F. Ros, V. Lifke, B. Zeitler, O. Rottmann, A. Vincent, L. Zhang, S. Jenkins, H. Niersbach, A. J. Kind, P. D. Gregory, A. E. Schnieke, and J. Platzer. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE. 6:e21045. https://doi.org/10.1371/journal.pone.0021045
  9. Geurts, A. M., G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, and X. Meng, et al. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433. https://doi.org/10.1126/science.1172447
  10. Hauschild, J., B. Petersen, Y. Santiago, A. L. Queisser, J. W. Carnwath, A. Lucas-Hahn, L. Zhang, X. Meng, P. D. Gregory, R. Schwinzer, G. J. Cost, and H. Niemann. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:12013-12017. https://doi.org/10.1073/pnas.1106422108
  11. Hu, L. Y., C. C. Cui, Y. J. Song, X. G. Wang, Y. P. Jin, A. H. Wang, and Y. Zhang. 2012. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA. Biotechnol. Lett. 34:1251-1255. https://doi.org/10.1007/s10529-012-0912-9
  12. Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916. https://doi.org/10.1101/gr.7.9.910
  13. Lai, L., D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, and R. S. Prather. 2002. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
  14. Lloyd, A., C. L. Plaisier, D. Carroll, and G. N. Drews. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102:2232-2237. https://doi.org/10.1073/pnas.0409339102
  15. McCreath, K. J., J. Howcroft, K. H. S. Campbell, A. Colman, A. E. Schnieke, and A. J. Kind. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066-1069. https://doi.org/10.1038/35016604
  16. McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  17. Meng, X., M. B. Noyes, L. J. Zhu, N. D. Lawson, and S. A. Wolfe. 2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26:695-701. https://doi.org/10.1038/nbt1398
  18. Meyer, M., M. H. de Angelis, W. Wurst, and R. Kuhn. 2010. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 107:15022-15026. https://doi.org/10.1073/pnas.1009424107
  19. Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79. https://doi.org/10.1371/journal.pgen.0030079
  20. Park, S. J., H. J. Park, O. J. Koo, W. J. Choi, J. H. Moon, D. K. Kwon, J. T. Kang, S. Kim, J. Y. Choi, G. Jang, and B. C. Lee. 2012. Oxamflatin improves developmental competence of porcine somatic cell nuclear transfer embryos. Cell. Reprogram. 14:398-406. https://doi.org/10.1089/cell.2012.0007
  21. Patel, K. and H. Amthor. 2005. The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul. Disord. 15:117-126. https://doi.org/10.1016/j.nmd.2004.10.018
  22. Richt, J. A., P. Kasinathan, A. N. Hamir, J. Castilla, T. Sathiyaseelan, F. Vargas, J. Sathiyaseelan, H. Wu, H. Matsushita, J. Koster, S. Kato, I. Ishida, C. Soto, J. M. Robl, and Y. Kuroiwa. 2007. Production of cattle lacking prion protein. Nat. Biotechnol. 25:132-138. https://doi.org/10.1038/nbt1271
  23. Takasu, Y., I. Kobayashi, K. Beumer, K. Uchino, H. Sezutsu, S. Sajwan, D. Carroll, T. Tamura, and M. Zurovec. 2010. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol. 40:759-765. https://doi.org/10.1016/j.ibmb.2010.07.012
  24. Young, J. J., J. M. Cherone, Y. Doyon, I. Ankoudinova, F. M. Faraji, A. H. Lee, C. Ngo, D. Y. Guschin, D. E. Paschon, J. C. Miller, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, R. M. Harland, and B. Zeitler. 2011. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:7052-7057. https://doi.org/10.1073/pnas.1102030108
  25. Yu, S., J. Luo, Z. Song, F. Ding, Y. Dai, and N. Li. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21:1638-1640. https://doi.org/10.1038/cr.2011.153

Cited by

  1. Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases vol.30, pp.8, 2016, https://doi.org/10.5713/ajas.16.0697
  2. Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species vol.28, pp.7-8, 2017, https://doi.org/10.1007/s00335-017-9698-3
  3. ) vol.29, pp.1, 2018, https://doi.org/10.1080/10495398.2017.1289941