DOI QR코드

DOI QR Code

Effects of Dietary Octacosanol on Growth Performance, Carcass Characteristics and Meat Quality of Broiler Chicks

  • Long, L. (Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wu, S.G. (Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yuan, F. (Tianjin Naer Biotechnology Co., Ltd.) ;
  • Wang, J. (Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, H.J. (Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Qi, G.H. (Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2015.10.26
  • Accepted : 2016.04.22
  • Published : 2016.10.01

Abstract

Octacosanol, which has prominent physiological activities and functions, has been recognized as a potential growth promoter in animals. A total of 392 1-d-old male Arbor Acres broiler chicks with similar body weight were randomly distributed into four dietary groups of seven replicates with 14 birds each supplemented with 0, 12, 24, or 36 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for six weeks and was divided into the starter (day 1 to 21) and the grower (day 22 to 42) phases. The results showed that the feed conversion ratio (FCR) was significantly improved in broilers fed a diet containing 24 mg/kg octacosanol compared with those fed the control diet in the overall phase (day 1 to 42, p = 0.042). The average daily gain and FCR both showed linear effects in response to dietary supplementation of octacosanol during the overall phase (p = 0.031 and 0.018, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet showed a higher eviscerated yield, which increased by 5.88% and 4.26% respectively, than those fed the control diet (p = 0.030). The breast muscle yield of broilers fed with 24 mg/kg octacosanol diet increased significantly by 12.15% compared with those fed the control diet (p = 0.047). Eviscerated and breast muscle yield increased linearly with the increase in dietary octacosanol supplementation (p = 0.013 and 0.021, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet had a greater (p = 0.021) $pH_{45min}$ value in the breast muscle, which was maintained linearly in response to dietary octacosanol supplementation (p = 0.003). There was a significant decrease (p = 0.007) in drip loss value between the octacosanol-added and the control groups. The drip loss showed linear (p = 0.004) and quadratic (p = 0.041) responses with dietary supplementation of octacosanol. These studies indicate that octacosanol is a potentially effective and safe feed additive which may improve feed efficiency and meat quality, and increase eviscerated and breast muscle yield, in broiler chicks. Dietary supplementation of octacosanol at 24 mg/kg diet is regarded as the recommended dosage in the broilers' diet.

Keywords

Octacosanol;Growth Performance;Carcass Characteristics;Meat Quality;Broiler Chick

References

  1. Aneiros, E., R. Mas, B. Calderon, J. Illnait, L. Fernandez, G. Castano, and J. C. Fernandez. 1995. Effects of policosanol in lowering cholesterol levels in patients with type II hypercholesterolemia. Curr. Ther. Res. 56:176-182. https://doi.org/10.1016/0011-393X(95)85043-0
  2. Arruzazabala, M. L., D. Carbajal, R. Mas, V. Molina, S. Valdes, and A. Laguna. 1994. Cholesterol-lowering effects of policosanol in rabbits. Biol. Res. 27:205-208.
  3. Aviagen Inc. 2014. Arbor Acres Broiler Management Handbook. Aviagen Inc., Huntsville, AL, USA.
  4. Baillie, A. G. and P. J. Garlick. 1991. Responses of protein synthesis in different skeletal muscles to fasting and insulin in rats. Am. J. Physiol. 260:E891-E896.
  5. Brown-Borg, H. M. and A. Bartke. 2012. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J. Gerontol. A. Biol. Sci. Med. Sci. 67A:652-660. https://doi.org/10.1093/gerona/gls086
  6. Cai, L., Y. S. Park, S. I. Seong, S. W. Yoo, and I. H. Kim. 2015. Effects of rare earth elements-enriched yeast on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broiler chickens. Livest. Sci. 172:43-49. https://doi.org/10.1016/j.livsci.2014.11.013
  7. Carbajal, D., V. Molina, S. Valdes, L. Arruzazabala, I. Rodeiro, R. Mas, and J. Magraner. 1996. Possible cytoprotective mechanism in rats of D-002, an anti-ulcerogenic product isolated from beeswax. J. Pharm. Pharmacol. 48:858-860. https://doi.org/10.1111/j.2042-7158.1996.tb03987.x
  8. Castano, G., R. Mas, L. Feranadez, J. C. Fernandez, J. Illnait, L. E. Lopez, and E. Alvarez. 2000. Effects of policosanol on postmenopausal women with type II hypercholesterolemia. Gynecol. Endocrinol. 14:187-195. https://doi.org/10.3109/09513590009167681
  9. Chikunya. S., G. Demirel, M. Enser, J. D. Wood, R. G. Wilkinson, and L. A. Sinclair. 2004. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Br. J. Nutr. 91:539-550. https://doi.org/10.1079/BJN20031078
  10. Crowley, M. A., W. T. Willis, K. S. Matt, and C. M. Donovan. 1996. A reduced lactate mass explains much of the glycogen sparing associated with training. J. Appl. Physiol. 81:362-367. https://doi.org/10.1152/jappl.1996.81.1.362
  11. de Oliveira, A. M., L. M. Conserva, J. N. de Souza Ferro, F. de Almeida Brito, R. P. Lyra Lemos, and E. Barreto. 2012. Antinociceptive and anti-inflammatory effects of octacosanol from the leaves of Sabicea grisea var. grisea in mice. Int. J. Mol. Sci. 13:1598-1611. https://doi.org/10.3390/ijms13021598
  12. Douris, P. C., B. P. White, R. R. Cullen, W. E. Keltz, J. Meli, D. M. Mondiello, and D. Wenger. 2006. The relationship between maximal repetition performance and muscle fiber type as estimated by noninvasive technique in the quadriceps of untrained women. J. Strength. Cond. Res. 20:699-703.
  13. Gouni-Berthold, I. and H. K. Berthold, 2002. Policosanol: Clinical pharmacology and therapeutic significance of a new lipidlowering agent. Am. Heart. J. 143:356-365. https://doi.org/10.1067/mhj.2002.119997
  14. Hernandez, F., J. Illait, R. Mas, G. Castano, L. Fernandez, M. Gonzalez, N. Cordovi, and J. C. Fernandez. 1992. Effects of policosanol on serum lipids and lipoproteins in healthy volunteers. Curr. Ther. Res. 51:568-575.
  15. Honikel, K. O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49:447-457. https://doi.org/10.1016/S0309-1740(98)00034-5
  16. Kamboh, A. A. and W. Y. Zhu. 2013. Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult. Sci. 92:454-461. https://doi.org/10.3382/ps.2012-02584
  17. Kato, S., K. I. Karino, S. Hasegawa, J. Nagasawa, A. Nagasaki, M. Eguchi, T. Ichinose, K. Tago, H. Okumori, K. Hamatani, M. Takahashi, J. Ogasawara, S. Masushige, and S. Masushige. 1995. Octacosanol affects lipid metabolism in rats fed on a high-fat diet. Br. J. Nutr. 73:433-441. https://doi.org/10.1079/BJN19950045
  18. Kim, H., S. Park, D. S. Han, and T. Park. 2004. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats. J. Med. Food 6:345-351.
  19. Lavery, G. G., E. A. Walker, N. Turan, D. Rogoff, J. W. Ryder, J. M. Shelton, J. A. Richardson, F. Falciani, P. C. White, P. M. Stewart, K. L. Parkers, and D. R. McMillan. 2008. Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy. J. Biol. Chem. 283:8453-8461. https://doi.org/10.1074/jbc.M710067200
  20. Liao, X. D., R. J. Wu, G. Ma, L. M. Zhao, Z. J. Zheng, and R. J. Zhang. 2015. Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids Health Dis. 14:36. https://doi.org/10.1186/s12944-015-0035-0
  21. Long, L., M. Z. Gao, K. Peng, J. Sun, and S. X. Wang. 2015. Effects of octacosanol extracted from rice bran on production performance and blood parameters in weanling piglets. J. Chinese Cereals Oils Assoc. 30:94-100.
  22. McCormick, R. J. 1999. Extracellular modification to muscle collagen: Implication for meat quality. Poult. Sci. 78:785-791. https://doi.org/10.1093/ps/78.5.785
  23. Menendez, R., V. Fraga, A. M. Amor, R. M. Gonzalez, and R. Mas. 1999. Oral administration of policosanol inhibits in vitro copper ion-induced rat lipoprotein peroxidation. Physiol. Behav. 67:1-7. https://doi.org/10.1016/S0031-9384(99)00004-9
  24. Menendez, R., R. Mas, A. M. Amor, R. M. Gonzalez, J. C. Fernandez, I. Rodeiro, M. Zayas, and S. Jimenez. 2000. Effects of policosanol treatment on the susceptibility of low density lipoprotein (LDL) isolated from healthy volunteers to oxidative modification in vitro. Br. J. Clin. Pharmacol. 50:255-262.
  25. MAC (Ministry of Agriculture of China). 2004. Feeding Standard of Chicken. NY/T 33-2004. Standards Press of China, Beijing, China.
  26. NRC (National Research Council). 1994. Nutrient Requirements of Poultry. 9th rev. edn. National Academy Press, Washington, DC, USA.
  27. Ohta, Y., K. Ohashi, T. Matsura, K. Tokunaga, A. Kitagawa, and K. Yamada. 2008. Octacosanol attenuates disrupted hepatic reactive oxygen species metabolism associated with acute liver injury progression in rats intoxicated with carbon tetrachloride. J. Clin. Biochem. Nutr. 42:118-125. https://doi.org/10.3164/jcbn.2008017
  28. Oliaro-Bosso, S., E. C. Gaudino, S. Mantegna, E. Giraudo, C. Meda, F. Viola, and G. Cravotto. 2009. Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids 44:907-916. https://doi.org/10.1007/s11745-009-3338-y
  29. Pons, P., A. Jimenez, M. Rodrigues, J. Illnait, R. Mas, L. Fernandez, and J. C. Fernandez. 1993. Effects of policosanol in elderly hypercholesterolemic patients. Curr. Ther. Res. 53:265-269. https://doi.org/10.1016/S0011-393X(05)80784-2
  30. Qiao, X., H. J. Zhang, S. G. Wu, H. Y. Yue, J. J. Zuo, D. Y. Feng, and G. H. Qi. 2013. Effects of ${\beta}$-hydroxy-${\beta}$-methylbutyrate calcium on growth, blood parameters and carcass qualities of broiler chickens. Poult. Sci. 92:753-759. https://doi.org/10.3382/ps.2012-02341
  31. Saint-John, M. and L. McNaughton. 1986. Octacosanol ingestion and its effects on metabolic responses to submaximal cycle ergometry, reaction time and chest and grip strength. Int. Clin. Nutr. Rev. 6:81-87.
  32. Scheele, C. W. 1997. Pathological changes in metabolism of poultry related to increasing production levels. Vet. Q. 19:127-130. https://doi.org/10.1080/01652176.1997.9694756
  33. Shimura, S., T. Hasegawa, S. Takano, and T. Suzuki. 1987. Studies on the effect of octacosanol on motor endurance in mice. Nutr. Rep. Int. 36:1029-1038.
  34. Singh, D. K., L. Li, and T. D. Porter. 2006. Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of AMPkinase. J. Pharmacol. Exp. Ther. 318:1020-1026. https://doi.org/10.1124/jpet.106.107144
  35. Taylor, J. C., L. Rapport, and G. B. Lockwood. 2003. Octacosanol in human health. Nutrition 19:192-195. https://doi.org/10.1016/S0899-9007(02)00869-9
  36. Xiang, Y., H. Yang, X. Wu, and J. P. Liu. 2012. Research and application progress of energy metabolism of body controlled by octacosanol. J. Xinxiang Univ. 29:44-46.
  37. Xu, R. P. and H. Shen. 1997. Application of octacosanol in broilers diet. Feed Res. 5:26. (in Chinese)
  38. Xu, Z. Y., E. Fitz, N. Riediger, and M. H. Moghadasian. 2007. Dietary octacosanol reduces plasma triacylglycerol levels but not atherogenesis in apolipoprotein E-knockout mice. Nutr. Res. 27:212-217. https://doi.org/10.1016/j.nutres.2007.01.015
  39. Yang, H. 2012. The Preparation of Octacosanol and the Mechanism of the Impact on Energy Metabolism. M. Sc. Thesis, Changsha University of Science and Technology, Changsha, China.
  40. Yu, C. Q. 2003. Study on damage of myocardial mitochondria in rats after exhaustive exercise. China Food Additives 2:35-37 (in Chinese).
  41. Zhang, W. H., F. Gao, Q. F. Zhu, C. Li, Y. Jiang, S. F. Dai, and G. H. Zhou. 2011. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult. Sci. 90:2592-2599. https://doi.org/10.3382/ps.2011-01446