Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress

고농도 아연 조건에서 수수-수단그라스 교잡종의 생장, 광합성 및 아연 제거능

  • Oh, Soonja (Agricultural Research Institute for Climate Change, RDA) ;
  • Koh, Seok Chan (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과.기초과학연구소)
  • Received : 2016.06.10
  • Accepted : 2016.08.12
  • Published : 2016.08.31


Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.


Biomass;PSII photochemical activity;Photosynthetic $CO_2$ fixation rate;Zinc accumulation;Zn toxicity


Supported by : 제주녹색환경지원센터


  1. Baker, A. J. M., Brooks, R. R., 1989, Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81-126.
  2. Bjorkman, O., Demmig, B., 1987, Photon yield of $O_2$ evolution and chlorophyll fluorescence characteristic at 77K among vascular plant of diverse origins, Planta, 170, 489-504.
  3. Bonnet, M., Camares, O., Veisseire, P., 2000, Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo), J. Exp. Bot., 51, 945-953.
  4. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A., 2007, Zinc in plants, New Phytol., 173, 677-702.
  5. Cambrolle, J., Mancilla-Leyton, J. M., Munoz-Valles, S., Luque, T., Figueroa, M. E., 2012, Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides, Chemosp., 86, 867-874.
  6. Chaoui, A., Mazhoudi, S., Ghorbal, M. H., Elferjani, E., 1997, Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.), Plant Sci., 127, 139-147.
  7. Foy, C. D., Chaney, R. L., White, M. C., 1978, The physiology of metal toxicity in plants, Annu. Rev. Plant Physiol., 29, 511-566.
  8. Hansch, R., Mendel, R. R., 2009, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. opin. plant biol., 12, 259-266.
  9. Hassan, Z., Aarts, M. G. M., 2011, Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants, Environ. Exp. Bot., 72, 53-63.
  10. Hoagland, D. R., Arnon, D. I., 1950, The water-culture method for growing plants without soil, Univ. of Calif. Agricu. Exp. Stn. Circ., 347, 1-32.
  11. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., Chandra, A., 2010, Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.), Acta physiol. plant., 32, 979-986.
  12. Kaya, C., Higgs, D., 2001, Inter-relationships between zinc nutrition, growth parameters, and nutrient physiology in a hydroponically grown tomato cultivar, J. plant nutrition, 24, 1491-1503.
  13. Kriedemann, P. E., Graham, R. D., Wiskich, J. T., 1985, Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves, Aust. J. Agric. Res., 36, 157-169.
  14. Kumar, P. N., Dushenkov, V., Motto, H., Raskin, I., 1995, Phytoextraction: The use of plants to remove heavy metals from soils, Environ. Sci. Technol., 29, 1232-1238.
  15. L'Herroux, L., Le Roux, S., Appriou, P., Martinez, J., 1997, Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France), Environ. Pollu., 97, 119-130.
  16. Legros, S., Doelsch, E., Feder, F., Moussard, G., Sansoulet, J., Gaudet, J. P., Bottero, J. Y., 2013, Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water-soil-plant system, Agri. Ecos. Environ., 164, 70-79.
  17. Mallick, N., Mohn, F. H., 2003, Use of chlorophyll fluorescence in metal-stress research: A case study with the green microalga Scenedesmus, Ecotox. Environ. Saf., 55, 64-69.
  18. Mateos-Naranjo, E., Redondo-Gomez, S., Cambrolle, J., Luque, T., Figueroa, M. E., 2008, Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora, Plant Biol., 10, 754-762.
  19. Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H., Hitmi, A., 2001, Relationship between PSII activity, $CO_2$ fixation, and Zn, Mn, and Mg contents of Lolium perenne under zinc stress, J. Plant Physiol., 158, 1137-1144.
  20. Mousavi, S. R., Galavi, M., Rezaei, M., 2013, Zinc (Zn) importance for crop production, Intl. J. Agron. Plant Prod., 4, 64-68.
  21. NIAST (National Institute of Agricultural Science and Technology), 2000, Analytical methods of soil and plant. NIAST. Rural Development Administration (RDA), Suwon, Korea.
  22. Oh, M. H., 1998, Changes in copper and zinc content in volcanic ash soils with Years of Citrus cultivation, M.S. Degree, Jeju National University, Jeju, Korea.
  23. Oh, S., Koh, S. C., 2015, Copper and zinc uptake capacity of a sorghum-sudangrass hybrid selected for in situ pytoremediation of soils polluted by heavy metals, J. Environ. Sci., 24, 1501-1511.
  24. Penha, H. G. V., Menezes, J. F. S., Silva, C. A., Lopes, G., de Andrade Carvalho, C., Ramos, S. J., Guilherme, L. R. G., 2015, Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil, Nutri. Cycling Agroeco., 101, 259-269.
  25. Prasad, M. N. V., 1999, Heavy metal stress in plants: from molecules to ecosystems, Springer, Berlin.
  26. Sagardoy, R., Morales, F., Lopez-Millan, A. F., Abadia, A., Abadia, J., 2009, Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics, Plant Biol., 11, 339-350.
  27. Sagardoy, R., Vazquez, S., Florez-Sarasa, I. D., Albacete, A., Ribas-Carbo, M., Flexas, J., 2010, Stomatal and mesophyll conductances to $CO_2$ are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc, New Phytol., 187, 145-158.
  28. Shrotri, C., Rathore, V., Mohanty, P., 1981, Studies on photosynthetic electron transport, photophosphorylation and $CO_2$ fixation in $Zn^{2+}$ deficient leaf cells of Zea mays, J. Plant Nutri., 3, 945-954.
  29. Shute, T., Macfie, S. M., 2006, Cadmium and zinc accumulation in soybean: A threat to food safety?, Sci. Total Environ., 371, 63-73.
  30. Sikdar, S. K., Grosse, D., Rogut, I., 1998, Membrane technologies for remediating contaminated soils: A critical review, J. Membr. Sci., 151, 75-85.
  31. Todeschini, V., Lingua, G., D'Agostino, G., Carniato, F., Roccotiello, E., Berta, G., 2011, Effects of high zinc concentration on poplar leaves: A morphological and biochemical study, Environ. Exp. Bot., 71, 50-56.
  32. Vaillant, N., Monnet, F., Hitmi, A., Sallanon, H., Coudret, A., 2005, Comparative study of responses in four Datura species to a zinc stress, Chemosphere, 59, 1005-1013.