DOI QR코드

DOI QR Code

Comparison of Radical Scavenging, Anticytotoxic, and Anti-Inflammatory Effects of Euphorbia Maculata and E. supina

큰땅빈대와 애기땅빈대의 라디칼 소거, 세포독성 억제 및 항염증 활성 비교

  • Rhim, Tae-Jin (Department of Animal Biotechnology in Division of Animal and Life Resources, Sangji University)
  • 임태진 (상지대학교 동물생명자원학부 동물생명공학전공)
  • Received : 2016.06.09
  • Accepted : 2016.08.17
  • Published : 2016.08.31

Abstract

This study was conducted to compare the antioxidant, anticytotoxic, and anti-inflammatory properties of Euphorbia maculata ethanol extract with those of E. supina ethanol extract. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide scavenging activities of E. maculata at $50{\mu}g/mL$ were $38.3{\pm}3.7$ and $21.5{\pm}1.2%$, respectively, whereas those of E. supina at the same concentration were $109.4{\pm}0.9$ and $59.5{\pm}4.8%$, respectively. Oxygen radical absorbance capacities of E. maculata and E. supina at $10{\mu}g/mL$ were $14.70{\pm}0.63$ and $26.17{\pm}1.36nmol/mL$ Trolox, respectively. Cupric reducing antioxidant capacities of E. maculata and E. supina at $10{\mu}g/mL$ were $10.22{\pm}0.97$ and $62.99{\pm}5.28nmol/mL$ Trolox, respectively. Total phenolic contents of E. maculata and E. supina at $50{\mu}g/mL$ were $29.03{\pm}0.14$ and $87.89{\pm}0.20nmol/mL$ gallic acid, respectively. E. maculata and E. supina were reported to prevent supercoiled DNA breakage induced by peroxyl and hydroxyl radicals in a concentration-dependent manner, where protection against the supercoiled DNA breakage provided by E. supina was greater than that provided by E. maculata. E. maculata and E. supina at $100{\mu}g/mL$ inhibited tert-butyl hydroperoxide-induced cytotoxicity in HepG2 cells by $49.4{\pm}4.3$ and $87.3{\pm}4.5%$, respectively. E. maculata and E. supina at $500{\mu}g/mL$ inhibited lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells by $63.1{\pm}7.0$ and $85.2{\pm}1.6%$, respectively. The antioxidant capacities including DPPH radical scavenging, superoxide scavenging, oxygen radical absorbance, and cupric reducing antioxidant activity were found to be highly correlated with total phenolic content (0.896 < r < 0.983, p < 0.01) and anticytotoxic activities (0.915 < r < 0.960, p < 0.01). However, the superoxide scavenging activity was not significantly correlated (r = 0.604, p > 0.05) with the anti-inflammatory activity. Thus, these findings demonstrated that the radical scavenging, anticytotoxic, and anti-inflammatory capacities of E. supina were more potent than those of E. maculata. Further studies are needed to elucidate the properties of polyphenolic constituents in E. supina responsible for these effects and the underlying mechanisms.

Keywords

Euphorbia maculata;Euphorbia supina;Radical scavenging;Anticytotoxic;Anti-inflammatory

Acknowledgement

Supported by : 상지대학교

References

  1. Agata, I., Hatano, T., Nakaya, Y., Sugaya, T., Nishibe, S., Yoshida, T., Okuda, T., 1991, Tannins and related polyphenols of Euphorbiaceous plants. VIII. eumaculin A and eusupinin A, and accompanying polyphenols from Euphorbia maculata L. and E. supina Rafin., Chem. Pharm. Bull., 39, 881-883. https://doi.org/10.1248/cpb.39.881
  2. An, D. H., Cho, S. J., Jung, E. S., Lee, H. J., Hwang, J. H., Park, E., Park, H. R., Lee, S. C., 2006, Antioxidant and anticancer activities of water extracts from Ceramium kondoi, J. Korean Soc. Food Sci. Nutr., 35, 1304-1308. https://doi.org/10.3746/jkfn.2006.35.10.1304
  3. Apak, R., Guclu, K., Ozyurek, M., Karademir, S. E., 2004, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 52, 7970-7981. https://doi.org/10.1021/jf048741x
  4. Bravo, L., 1998, Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev., 56, 317-333.
  5. Chae, H. S., Song, H. H., Kim, Y. M., Lee, H. K., Oh, S. R., Chin, Y. W., 2015, Euphorbia supina inhibits inflammatory mediators in mouse bone marrow-derived mast cells and macrophages, Int. Immunopharmacol., 29, 966-973. https://doi.org/10.1016/j.intimp.2015.09.008
  6. Choi, H. M., Lim, S. Y., 2014, Fatty acid composition and antiproliferative activity of extracts from Euphorbia supina, J. Life Sci., 24, 74-80. https://doi.org/10.5352/JLS.2014.24.1.74
  7. Du, G., Li, M., Ma, F., Liang, D., 2009, Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits, Food Chemistry, 113, 557-562. https://doi.org/10.1016/j.foodchem.2008.08.025
  8. Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S., Girardin, S. E., 2007, Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-$1{\beta}$ generation, Clin. Exp. Immunol., 147, 227-235.
  9. Garcia-Nino, W. R., Zazueta, C., 2015, Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection, Pharmacol. Res., 97, 84-103. https://doi.org/10.1016/j.phrs.2015.04.008
  10. Hiramoto, K., Ojima, N., Sako, K. I., Kikugawa, K., 1996, Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical, Biol. Pharm. Bull., 19, 558-563. https://doi.org/10.1248/bpb.19.558
  11. Hong, H. K., Kwak, J. H., Kang, S. C., Lee, J. W., Park, J. H., Ahn, J. W., Kang, H. S., Choung, E. S., Zee, O. P., 2008, Antioxidative constituents from the whole plants of Euphorbia supina, Kor. J. Pharmacogn., 39, 260-264.
  12. Hu, C., Zhang, Y., Kitts, D. D., 2000, Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro, J. Agric. Food Chem., 48, 3170-3176. https://doi.org/10.1021/jf0001637
  13. Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., Prior, R. L., 2002, High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format, J. Agric. Food Chem., 50, 4437-4444. https://doi.org/10.1021/jf0201529
  14. Kwon, S. U., Cha, J. Y., Lee, H. Y., Xin, M., Ji, S. J., Kim, D. K., Park, D. S., Pyo, M. K., Lee, Y. M., 2015, Chloroform fraction of Euphorbia maculata has antiplatelet activity via suppressing thromboxane $B_2$ formation, Mol. Med. Rep., 11, 4255-4261. https://doi.org/10.3892/mmr.2015.3319
  15. Lee, T. B., 2006, Coloured flora of Korea, Hyangmunsa, Seoul, 676-677.
  16. Liu, F., Ooi, V. E. C., Chang, S. T., 1997, Free radical scavenging activities of mushroom polysaccharide extracts, Life Sci., 60, 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  17. Luyen, B. T. T., Tai, B. H., Thao, N. P., Lee, S. H., Jang, H. D., Lee, Y. M., Kim, Y. H., 2014, Evaluation of the anti-osteoporosis and antioxidant activities of phenolic compounds from Euphorbia maculata, J. Korean Soc. Appl. Biol. Chem., 57, 573-579. https://doi.org/10.1007/s13765-014-4157-2
  18. Malterud, K. E., Farbrot, T. L., Huse, A. E., Sund, R. B., 1993, Antioxidant and radical scavenging effects of anthraquinones and anthrones, Pharmacol., 47, 77-85. https://doi.org/10.1159/000139846
  19. Moncada, S., Palmer, R. M. J., Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 43, 109-142.
  20. Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  21. Nugroho, A., Rhim, T. J., Choi, M. Y., Choi, J. S., Kim, Y. C., Kim, M. S., Park, H. J., 2014, Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supina, Arch. Pharm. Res., 37, 890-898. https://doi.org/10.1007/s12272-013-0307-z
  22. Park, S. C., Son, D. Y., 2011, Inhibitory effects of Euphorbia supina Rafin on the production of pro-inflammatory mediator by LPS-stimulated RAW 264.7 macrophages, J. Korean Soc. Food Sci. Nutr., 40, 486-492. https://doi.org/10.3746/jkfn.2011.40.4.486
  23. Pavlova, E. L., Zografov, N. N., Simeonova, L. S., 2016, Comparative study on the antioxidant capacities of synthetic influenza inhibitors and ellagic acid in model systems, Biomed. Pharmacother., 83, 755-762. https://doi.org/10.1016/j.biopha.2016.07.046
  24. Rhim, T. J., 2015, Anticytotoxic and radical scavenging activities of Acer tegmentosum Maxim stem extracts, J. Environ. Sci. Int., 24, 1315-1329. https://doi.org/10.5322/JESI.2015.24.11.1315
  25. Seo, C. S., Jeong, S. J., Yoo, S. R., Lee, N. R., Shin, H. K., 2016, Quantitative analysis and in vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from radix sanguisorbae, Pharmacogn. Mag., 12, 104-108. https://doi.org/10.4103/0973-1296.177908
  26. Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M., 1999, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Methods Enzymol., 299, 152-178.
  27. Song, Y., Jeong, S. W., Lee, W. S., Park, S., Kim, Y. H., Kim, G. S., Lee, S. J., Jin, J. S., Kim, C. Y., Lee, J. E., Ok, S. Y., Bark, K. M., Shin, S. C., 2014, Determination of polyphenol components of Korean prostrate spurge (Euphorbia supina) by using liquid chromatography tandem mass spectrometry: Overall contribution to antioxidant activity, J. Anal. Methods Chem., 2014, 418690.
  28. Stuehr, D. J., Marletta, M. A., 1985, Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide, Proc. Natl. Acad. Sci. USA, 82, 7738-7742. https://doi.org/10.1073/pnas.82.22.7738
  29. Stuehr, D. J., Nathan, C. F., 1989, Nitric oxide: A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J. Exp. Med., 169, 1543-1555. https://doi.org/10.1084/jem.169.5.1543
  30. Tanaka, R., Matsunaga, S., 1988, Triterpene constituents from Euphorbia supina, Phytochemistry, 27, 3579-3584. https://doi.org/10.1016/0031-9422(88)80772-6
  31. Thannickal, V. J., Fanburg, B. L., 2000, Reactive oxygen species in cell signaling, Am. J. Physiol. Lung Cell. Mol. Physiol., 279, L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
  32. Vidyashankar, S., Mitra, S. K., Nandakumar, K. S., 2010, Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide, Mol. Cell. Biochem., 333, 41-48. https://doi.org/10.1007/s11010-009-0202-6