DOI QR코드

DOI QR Code

Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy

Lee, You-Kyung;Lee, Jin-A

  • Received : 2016.05.10
  • Accepted : 2016.06.29
  • Published : 2016.08.31

Abstract

Autophagy, an evolutionarily conserved cellular degradation pathway of the lysosome, is associated with many physiological and pathological processes. The hallmark of autophagy is the formation of the autophagosome that engulfs and degrades cytosolic components via its fusion with the lysosome, in either a selective or a non-selective manner. Autophagy is tightly regulated by proteins encoded by autophagy-related (atg) genes. Among these proteins, ATG8/LC3 is essential for autophagosome biogenesis/maturation and it also functions as an adaptor protein for selective autophagy. In mammalian cells, several homologs of yeast Atg8 such as MAP1LC3, GABARAP, and GABARAPL 1/2 have been identified. However, the biological relevance of this gene diversity in higher eukaryotes, and their specific roles, are largely unknown. In this review, we describe the mammalian ATG8/LC3 family and discuss recent advancements in understanding their roles in the autophagic process.

Keywords

ATG8;Autophagy;GABARAP;GABARAPL;LC3

References

  1. Klionsky DJ and Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5, 427-433 https://doi.org/10.1159/000351979
  2. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931-937 https://doi.org/10.1038/nrm2245
  3. Schneider JL and Cuervo AM (2014) Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26, 16-23 https://doi.org/10.1016/j.gde.2014.04.003
  4. Ktistakis NT and Tooze SA (2016) Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol 26, 624-635 https://doi.org/10.1016/j.tcb.2016.03.006
  5. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C and Deretic V (2015) Secretory autophagy. Curr Opin Cell Biol 35, 106-116 https://doi.org/10.1016/j.ceb.2015.04.016
  6. Xie Z and Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109 https://doi.org/10.1038/ncb1007-1102
  7. Rogov V, Dotsch V, Johansen T and Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53, 167-178 https://doi.org/10.1016/j.molcel.2013.12.014
  8. Martinez J, Almendinger J, Oberst A et al (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 108, 17396-17401 https://doi.org/10.1073/pnas.1113421108
  9. Slobodkin MR and Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55, 51-64 https://doi.org/10.1042/bse0550051
  10. Xin Y, Yu L, Chen Z et al (2001) Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 74, 408-413 https://doi.org/10.1006/geno.2001.6555
  11. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y and Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117, 2805-2812 https://doi.org/10.1242/jcs.01131
  12. Stadel D, Millarte V, Tillmann KD et al (2015) TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. Mol Cell 60, 89-104 https://doi.org/10.1016/j.molcel.2015.09.010
  13. Coyle JE and Nikolov DB (2003) GABARAP: lessons for synaptogenesis. Neuroscientist 9, 205-216 https://doi.org/10.1177/1073858403009003013
  14. Chen ZW and Olsen RW (2007) GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem 100, 279-294 https://doi.org/10.1111/j.1471-4159.2006.04206.x
  15. Engedal N and Seglen PO (2016) Autophagy of cytoplasmic bulk cargo does not require LC3. Autophagy 12, 439-441 https://doi.org/10.1080/15548627.2015.1076606
  16. Pellerin I, Vuillermoz C, Jouvenot M, Ordener C, Royez M and Adessi GL (1993) Identification and characterization of an early estrogen-regulated RNA in cultured guinea-pig endometrial cells. Mol Cell Endocrinol 90, R17-21 https://doi.org/10.1016/0303-7207(93)90161-C
  17. Le Grand JN, Chakrama FZ, Seguin-Py S et al (2011) GABARAPL1 (GEC1): original or copycat? Autophagy 7, 1098-1107 https://doi.org/10.4161/auto.7.10.15904
  18. Sagiv Y, Legesse-Miller A, Porat A and Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19, 1494-1504 https://doi.org/10.1093/emboj/19.7.1494
  19. Tolle F, Risold PY, Mansuy-Schlick V et al (2008) Specific regional distribution of gec1 mRNAs in adult rat central nervous system. Brain Res 1210, 103-115 https://doi.org/10.1016/j.brainres.2008.02.077
  20. Feng Y, Yao Z and Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25, 354-363 https://doi.org/10.1016/j.tcb.2015.02.002
  21. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y and Inagaki F (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9, 611-618 https://doi.org/10.1111/j.1356-9597.2004.00750.x
  22. Birgisdottir AB, Lamark T and Johansen T (2013) The LIR motif - crucial for selective autophagy. J Cell Sci 126, 3237-3247
  23. Huang R, Xu Y, Wan W et al (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57, 456-466 https://doi.org/10.1016/j.molcel.2014.12.013
  24. Alemu EA, Lamark T, Torgersen KM et al (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 287, 39275-39290 https://doi.org/10.1074/jbc.M112.378109
  25. Joachim J, Jefferies HB, Razi M et al (2015) Activation of ULK Kinase and Autophagy by GABARAP Trafficking from the Centrosome Is Regulated by WAC and GM130. Mol Cell 60, 899-913 https://doi.org/10.1016/j.molcel.2015.11.018
  26. Colecchia D, Strambi A, Sanzone S et al (2012) MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 8, 1724-1740 https://doi.org/10.4161/auto.21857
  27. Feng Y, He D, Yao Z and Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24, 24-41 https://doi.org/10.1038/cr.2013.168
  28. Fujita N, Hayashi-Nishino M, Fukumoto H et al (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19, 4651-4659 https://doi.org/10.1091/mbc.E08-03-0312
  29. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802 https://doi.org/10.1038/emboj.2010.74
  30. Albanesi J, Wang H, Sun HQ, Levine B and Yin H (2015) GABARAP-mediated targeting of PI4K2A/PI4KIIalpha to autophagosomes regulates PtdIns4P-dependent autophagosome-lysosome fusion. Autophagy 11, 2127-2129 https://doi.org/10.1080/15548627.2015.1093718
  31. McEwan DG, Popovic D, Gubas A et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57, 39-54 https://doi.org/10.1016/j.molcel.2014.11.006
  32. Pankiv S, Alemu EA, Brech A et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188, 253-269 https://doi.org/10.1083/jcb.200907015
  33. Popovic D, Akutsu M, Novak I, Harper JW, Behrends C and Dikic I (2012) Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 32, 1733-1744 https://doi.org/10.1128/MCB.06717-11
  34. Wild P, McEwan DG and Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127, 3-9 https://doi.org/10.1242/jcs.140426
  35. Kalvari I, Tsompanis S, Mulakkal NC et al (2014) iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 10, 913-925 https://doi.org/10.4161/auto.28260
  36. Lystad AH, Ichimura Y, Takagi K et al (2014) Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 15, 557-565 https://doi.org/10.1002/embr.201338003
  37. Ambivero CT, Cilenti L, Main S and Zervos AS (2014) Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal 26, 2921-2929 https://doi.org/10.1016/j.cellsig.2014.09.004
  38. Gao C, Cao W, Bao L et al (2010) Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12, 781-790 https://doi.org/10.1038/ncb2082
  39. Kang YA, Sanalkumar R, O’Geen H et al (2012) Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 32, 226-239 https://doi.org/10.1128/MCB.06166-11
  40. Xiao J, Zhu X, He B et al (2011) MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 18, 35 https://doi.org/10.1186/1423-0127-18-35
  41. Cherra SJ 3rd, Kulich SM, Uechi G et al (2010) Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 190, 533-539 https://doi.org/10.1083/jcb.201002108
  42. Wilkinson DS, Jariwala JS, Anderson E et al (2015) Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 57, 55-68 https://doi.org/10.1016/j.molcel.2014.11.019
  43. Lee IH and Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284, 6322-6328 https://doi.org/10.1074/jbc.M807135200
  44. Tanji K, Odagiri S, Maruyama A et al (2013) Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol Dis 49, 190-198 https://doi.org/10.1016/j.nbd.2012.08.017

Cited by

  1. The Atg8 Family of Proteins—Modulating Shape and Functionality of Autophagic Membranes vol.8, 2017, https://doi.org/10.3389/fgene.2017.00109
  2. Glioblastoma, hypoxia and autophagy: a survival-prone ‘ménage-à-trois’ vol.7, pp.10, 2016, https://doi.org/10.1038/cddis.2016.318
  3. iLIR@viral: A web resource for LIR motif-containing proteins in viruses 2017, https://doi.org/10.1080/15548627.2017.1356978
  4. Direct binding to GABARAP family members is essential for HIV-1 Nef plasma membrane localization vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06319-4
  5. PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0184909
  6. Implication of Different HIV-1 Genes in the Modulation of Autophagy vol.9, pp.12, 2017, https://doi.org/10.3390/v9120389
  7. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells vol.144, pp.3, 2018, https://doi.org/10.1007/s00432-017-2557-5
  8. Peripheral markers of autophagy in polyglutamine diseases vol.39, pp.1, 2018, https://doi.org/10.1007/s10072-017-3156-6
  9. Initial Steps in Mammalian Autophagosome Biogenesis vol.6, pp.2296-634X, 2018, https://doi.org/10.3389/fcell.2018.00146
  10. ATG8 Is Essential Specifically for an Autophagy-Independent Function in Apicoplast Biogenesis in Blood-Stage Malaria Parasites vol.9, pp.1, 2018, https://doi.org/10.1128/mBio.02021-17
  11. AIM/LIR-based fluorescent sensors—new tools to monitor mAtg8 functions pp.1554-8635, 2018, https://doi.org/10.1080/15548627.2018.1454238
  12. Ion channels in the regulation of autophagy vol.14, pp.1, 2018, https://doi.org/10.1080/15548627.2017.1384887
  13. The role of autophagy in the pathogenesis of periodontal disease pp.1354523X, 2019, https://doi.org/10.1111/odi.13045
  14. FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells pp.1432-1440, 2019, https://doi.org/10.1007/s00109-019-01750-8
  15. LC3-associated phagocytosis at a glance vol.132, pp.5, 2019, https://doi.org/10.1242/jcs.222984
  16. The highly GABARAP specific rat monoclonal antibody 8H5 visualizes GABARAP in immunofluorescence imaging at endogenous levels vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-36717-1

Acknowledgement

Grant : 국가과학자지원

Supported by : 서울대학교