MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

  • Deng, Yifan (Department of Neurosurgery, Huizhou Municipal Central Hospital) ;
  • Zhu, Gang (Department of Neurosurgery, Huizhou Municipal Central Hospital) ;
  • Luo, Honghai (Department of Neurosurgery, Huizhou Municipal Central Hospital) ;
  • Zhao, Shiguang (Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University)
  • Received : 2016.05.03
  • Accepted : 2016.07.13
  • Published : 2016.08.31


Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in $CD133^+$ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy.


  1. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760.
  2. Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C.P. (2007). CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010-4015.
  3. Beier, D., Wischhusen, J., Dietmaier, W., Hau, P., Proescholdt, M., Brawanski, A., Bogdahn, U., and Beier, C.P. (2008). CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol. 18, 370-377.
  4. Chen, Z., Li, D., Cheng, Q., Ma, Z., Jiang, B., Peng, R., Chen, R., Cao, Y., and Wan, X. (2014). MicroRNA-203 inhibits the proliferation and invasion of U251 glioblastoma cells by directly targeting PLD2. Mol. Med. Rep. 9, 503-508.
  5. Chomczynski, P., and Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581-585.
  6. Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313-319.
  7. Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275-284.
  8. Dontula, R., Dinasarapu, A., Chetty, C., Pannuru, P., Herbert, E., Ozer, H., and Lakka, S.S. (2013). MicroRNA 203 modulates Glioma cell migration via Robo1/ERK/MMP-9 signaling. Genes Cancer 4, 285-296.
  9. Hayes, J., Peruzzi, P.P., and Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460-469.
  10. Heywood, R.M., Marcus, H.J., Ryan, D.J., Piccirillo, S.G., Al-Mayhani, T.M., and Watts, C. (2012). A review of the role of stem cells in the development and treatment of glioma. Acta Neurochir (Wien) 154, 951-969; discussion 969.
  11. Lena, A.M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R.A., Melino, G., and Candi, E. (2008). miR-203 represses 'stemness' by repressing DeltaNp63. Cell Death Differ. 15, 1187-1195.
  12. Omuro, A., and DeAngelis, L.M. (2013). Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842-1850.
  13. Schraivogel, D., Weinmann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J.Y., Anton, M., Sixt, M., Weller, M., Beier, C.P., et al. (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J. 30, 4309-4322.
  14. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
  15. Visvader, J.E., and Lindeman, G.J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755-768.
  16. Yi, R., Poy, M.N., Stoffel, M., and Fuchs, E. (2008). A skin microRNA promotes differentiation by repressing 'stemness'. Nature 452, 225-229.
  17. Zhao, S., Deng, Y., Liu, Y., Chen, X., Yang, G., Mu, Y., Zhang, D., Kang, J., and Wu, Z. (2013). MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol. Biol. Rep. 40, 2789-2798.
  18. Zhao, B., Bian, E.B., and Li, J. (2014). New advances of microRNAs in glioma stem cells, with special emphasis on aberrant methylation of microRNAs. J. Cell Physiol. 229, 1141-1147.

Cited by

  1. Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma 2017,
  2. Comparative studies of vertebrate iduronate 2-sulfatase (IDS) genes and proteins: evolution of A mammalian X-linked gene vol.7, pp.1, 2017,
  3. miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling vol.49, pp.2, 2018,