DOI QR코드

DOI QR Code

Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

  • Jeon, Seong Gak (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Kim, Kyoung Ah (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Chung, Hyunju (Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong) ;
  • Choi, Junghyun (Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong) ;
  • Song, Eun Ji (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Han, Seung-Yun (Department of Anatomy, College of Medicine, Konyang University) ;
  • Oh, Myung Sook (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Park, Jong Hwan (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jin-il (Department of Nursing, College of Nursing, Jeju National University) ;
  • Moon, Minho (Department of Biochemistry, College of Medicine, Konyang University)
  • Received : 2016.03.28
  • Accepted : 2016.05.31
  • Published : 2016.08.31

Abstract

Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.

Acknowledgement

Supported by : Konyang University

References

  1. Ainge, J.A., Tamosiunaite, M., Woergoetter, F., and Dudchenko, P.A. (2007). Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. J. Neurosci. 27, 9769-9779. https://doi.org/10.1523/JNEUROSCI.2011-07.2007
  2. Antunes, M., and Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process 13, 93-110.
  3. Arai, Y., Pulvers, J.N., Haffner, C., Schilling, B., Nusslein, I., Calegari, F., and Huttner, W.B. (2011). Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154. https://doi.org/10.1038/ncomms1155
  4. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
  5. Bannerman, D.M., Sprengel, R., Sanderson, D.J., McHugh, S.B., Rawlins, J.N., Monyer, H., and Seeburg, P.H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15, 181-192. https://doi.org/10.1038/nrn3677
  6. Barnden, M.J., Allison, J., Heath, W.R., and Carbone, F.R. (1998). Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34-40. https://doi.org/10.1046/j.1440-1711.1998.00709.x
  7. Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H., et al. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94-98. https://doi.org/10.1038/nature08478
  8. Becker, S., Macqueen, G., and Wojtowicz, J.M. (2009). Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: Effects of interference, stress and depression. Brain Res. 24, 45-54.
  9. Bevins, R.A., and Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311. https://doi.org/10.1038/nprot.2006.205
  10. Broadbent, N.J., Gaskin, S., Squire, L.R., and Clark, R.E. (2009). Object recognition memory and the rodent hippocampus. Learn. Mem. 17, 5-11.
  11. Brusselle, G.G., Kips, J.C., Tavernier, J.H., van der Heyden, J.G., Cuvelier, C.A., Pauwels, R.A., and Bluethmann, H. (1994). Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy 24, 73-80. https://doi.org/10.1111/j.1365-2222.1994.tb00920.x
  12. Brynskikh, A., Warren, T., Zhu, J., and Kipnis, J. (2008). Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861-869. https://doi.org/10.1016/j.bbi.2007.12.008
  13. Bullens, D.M., Rafiq, K., Kasran, A., Van Gool, S.W., and Ceuppens, J.L. (1999). Naive human T cells can be a source of IL-4 during primary immune responses. Clin. Exp. Immunol. 118, 384-391. https://doi.org/10.1046/j.1365-2249.1999.01072.x
  14. Caldera-Alvarado, G., Khan, D.A., Defina, L.F., Pieper, A., and Brown, E.S. (2013). Relationship between asthma and cognition: the Cooper Center Longitudinal Study. Allergy 68, 545-548. https://doi.org/10.1111/all.12125
  15. Chatila, T.A. (2004). Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med. 10, 493-499. https://doi.org/10.1016/j.molmed.2004.08.004
  16. Choi, J.G., Moon, M., Jeong, H.U., Kim, M.C., Kim, S.Y., and Oh, M.S. (2011). Cistanches Herba enhances learning and memory by inducing nerve growth factor. Behav. Brain Res. 216, 652-658. https://doi.org/10.1016/j.bbr.2010.09.008
  17. Cushman, J., Lo, J., Huang, Z., Wasserfall, C., and Petitto, J.M. (2003). Neurobehavioral changes resulting from recombinase activation gene 1 deletion. Clin. Diagn. Lab. Immunol. 10, 13-18.
  18. Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci.11, 339-350. https://doi.org/10.1038/nrn2822
  19. Derecki, N.C., Cardani, A.N., Yang, C.H., Quinnies, K.M., Crihfield, A., Lynch, K.R., and Kipnis, J. (2010). Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067-1080. https://doi.org/10.1084/jem.20091419
  20. Erb, K.J., Ruger, B., von Brevern, M., Ryffel, B., Schimpl, A., and Rivett, K. (1997). Constitutive expression of interleukin (IL).-4 in vivo causes autoimmune-type disorders in mice. J. Exp. Med. 185, 329-339. https://doi.org/10.1084/jem.185.2.329
  21. Furuta, K., Ishido, S., and Roche, P.A. (2012). Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc. Natl. Acad. Sci. USA 109, 19380-19385. https://doi.org/10.1073/pnas.1213868109
  22. Gadani, S.P., Cronk, J.C., Norris, G.T., and Kipnis, J. (2012). IL-4 in the brain: a cytokine to remember. J. Immunol.189, 4213-4219. https://doi.org/10.4049/jimmunol.1202246
  23. Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717-728. https://doi.org/10.1038/sj.mp.4002055
  24. Halim, T.Y., Steer, C.A., Matha, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, K.M., McKenzie, A.N., and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425-435. https://doi.org/10.1016/j.immuni.2014.01.011
  25. Harper, R.W., Xu, C., Eiserich, J.P., Chen, Y., Kao, C.Y., Thai, P., Setiadi, H., and Wu, R. (2005). Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 579, 4911-4917. https://doi.org/10.1016/j.febslet.2005.08.002
  26. Hoglinger, G.U., Breunig, J.J., Depboylu, C., Rouaux, C., Michel, P.P., Alvarez-Fischer, D., Boutillier, A.L., Degregori, J., Oertel, W.H., Rakic, P., et al. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 3585-3590. https://doi.org/10.1073/pnas.0611671104
  27. Khoury, S.J., Hancock, W.W., and Weiner, H.L. (1992). Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355-1364. https://doi.org/10.1084/jem.176.5.1355
  28. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y., and Schwartz, M. (2004). T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl. Acad. Sci. USA 101, 8180-8185. https://doi.org/10.1073/pnas.0402268101
  29. Kipnis, J., Gadani, S., and Derecki, N.C. (2012). Pro-cognitive properties of T cells. Nature reviews. Immunology 12, 663-669. https://doi.org/10.1038/nri3280
  30. Lafaille, J.J., Keere, F.V., Hsu, A.L., Baron, J.L., Haas, W., Raine, C.S., and Tonegawa, S. (1997). Myelin basic protein-specific T helper 2 (Th2). cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307-312. https://doi.org/10.1084/jem.186.2.307
  31. Lee, S.Y., Kim, S.J., Kwon, S.S., Kim, Y.K., Kim, K.H., Moon, H.S., Song, J.S., and Park, S.H. (2001). Distribution and cytokine production of CD4 and CD8 T-lymphocyte subsets in patients with acute asthma attacks. Ann. Allergy Asthma Immunol. 86, 659-664. https://doi.org/10.1016/S1081-1206(10)62295-8
  32. Lee, W., Moon, M., Kim, H.G., Lee, T.H., and Oh, M.S. (2015). Heat stress-induced memory impairment is associated with neuroinflammation in mice. J. Neuroinflammation 12, 015-0324. https://doi.org/10.1186/s12974-015-0324-6
  33. Leung, S., Smith, D., Myc, A., Morry, J., and Baker, J.R., Jr. (2013). OT-II TCR transgenic mice fail to produce anti-ovalbumin antibodies upon vaccination. Cell Immunol. 282, 79-84. https://doi.org/10.1016/j.cellimm.2012.12.006
  34. Mandyam, C.D., Harburg, G.C., and Eisch, A.J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146, 108-122. https://doi.org/10.1016/j.neuroscience.2006.12.064
  35. Marin, I., and Kipnis, J. (2013). Learning and memory ... and the immune system. Learn. Mem. 20, 601-606. https://doi.org/10.1101/lm.028357.112
  36. McGowan, P.O., Hope, T.A., Meck, W.H., Kelsoe, G., and Williams, C.L. (2011). Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res. 1383, 187-195. https://doi.org/10.1016/j.brainres.2011.02.054
  37. Ming, G.L., and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223-250. https://doi.org/10.1146/annurev.neuro.28.051804.101459
  38. Moon, M., Song, H., Hong, H.J., Nam, D.W., Cha, M.Y., Oh, M.S., Yu, J., Ryu, H., and Mook-Jung, I. (2013). Vitamin D-binding protein interacts with Abeta and suppresses Abeta-mediated pathology. Cell. Death Differ. 20, 630-638. https://doi.org/10.1038/cdd.2012.161
  39. Noben-Trauth, N., Hu-Li, J., and Paul, W.E. (2000). Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J. Immunol.165, 3620-3625. https://doi.org/10.4049/jimmunol.165.7.3620
  40. Noben-Trauth, N., Hu-Li, J., and Paul, W.E. (2002). IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428-1433. https://doi.org/10.1002/1521-4141(200205)32:5<1428::AID-IMMU1428>3.0.CO;2-0
  41. Ouchi, Y., Banno, Y., Shimizu, Y., Ando, S., Hasegawa, H., Adachi, K., and Iwamoto, T. (2013). Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J. Neurosci. 33, 9408-9419. https://doi.org/10.1523/JNEUROSCI.2700-12.2013
  42. Palumbo, M.L., Canzobre, M.C., Pascuan, C.G., Rios, H., Wald, M., and Genaro, A.M. (2010). Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress exposure. J. Neuroimmunol. 218, 12-20. https://doi.org/10.1016/j.jneuroim.2009.11.005
  43. Park, K.W., Baik, H.H., and Jin, B.K. (2008). Interleukin-4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr. Aging Sci. 1, 192-201. https://doi.org/10.2174/1874609810801030192
  44. Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S.V., Joachimiak, A., and Woloschak, G.E. (2001). Proliferating cell nuclear antigen (PCNA).: ringmaster of the genome. Int J. Radiat. Biol. 77, 1007-1021. https://doi.org/10.1080/09553000110069335
  45. Radjavi, A., Smirnov, I., Derecki, N., and Kipnis, J. (2014a). Dynamics of the meningeal CD4(+). T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol. Psychiatry 19, 531-533. https://doi.org/10.1038/mp.2013.79
  46. Radjavi, A., Smirnov, I. and Kipnis, J. (2014b). Brain antigenreactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35, 58-63. https://doi.org/10.1016/j.bbi.2013.08.013
  47. Rampon, C., Tang, Y.P., Goodhouse, J., Shimizu, E., Kyin, M., and Tsien, J.Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238-244. https://doi.org/10.1038/72945
  48. Rattazzi, L., Piras, G., Ono, M., Deacon, R., Pariante, C.M., and D'Acquisto, F. (2013). CD4(+). but not CD8(+). T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl. Psychiatry 3, e280. https://doi.org/10.1038/tp.2013.54
  49. Rivas, D., Mozo, L., Zamorano, J., Gayo, A., Torre-Alonso, J.C., Rodriguez, A., and Gutierrez, C. (1995). Upregulated expression of IL-4 receptors and increased levels of IL-4 in rheumatoid arthritis patients. J. Autoimmun. 8, 587-600. https://doi.org/10.1016/0896-8411(95)90010-1
  50. Schloesser, R.J., Manji, H.K., and Martinowich, K. (2009). Suppression of Adult Neurogenesis Leads to an Increased HPA Axis Response. Neuroreport 20, 553-557. https://doi.org/10.1097/WNR.0b013e3283293e59
  51. Schwartz, M., Kipnis, J., Rivest, S., and Prat, A. (2013). How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci. 33, 17587-17596. https://doi.org/10.1523/JNEUROSCI.3241-13.2013
  52. Serre, K., Mohr, E., Gaspal, F., Lane, P.J., Bird, R., Cunningham, A.F., and Maclennan, I.C. (2010). IL-4 directs both CD4 and CD8 T cells to produce Th2 cytokines in vitro, but only CD4 T cells produce these cytokines in response to alum-precipitated protein in vivo. Mol. Immunol. 47, 1914-1922. https://doi.org/10.1016/j.molimm.2010.03.010
  53. Sierra, A., Encinas, J.M., and Maletic-Savatic, M. (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci. 5, 47.
  54. Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458-461. https://doi.org/10.1038/nature10287
  55. Taglialatela, G., Hogan, D., Zhang, W.R., and Dineley, K.T. (2009). Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav. Brain Res. 200, 95-99. https://doi.org/10.1016/j.bbr.2008.12.034
  56. Tavakkol Afshari, J., Farid Hosseini, R., Hosseini Farahabadi, S., Heydarian, F., Boskabady, M.H., Khoshnavaz, R., Razavi, A., Ghayoor Karimiani, E., and Ghasemi, G. (2007). Association of the expression of IL-4 and IL-13 genes, IL-4 and IgE serum levels with allergic asthma. Iran J. Allergy Asthma Immunol. 6, 67-72.
  57. Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338. https://doi.org/10.1016/S0092-8674(00)81827-9
  58. Tsirakis, G., Pappa, C.A., Kaparou, M., Katsomitrou, V., Hatzivasili, A., Alegakis, T., Xekalou, A., Stathopoulos, E.N., and Alexandrakis, M.G. (2011). Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients. Eur. J. Histochem. 55, 27. https://doi.org/10.4081/ejh.2011.e27
  59. Walch, L., Massade, L., Dufilho, M., Brunet, A., and Rendu, F. (2006). Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 187, 285-291. https://doi.org/10.1016/j.atherosclerosis.2005.09.016
  60. Wolf, S.A., Steiner, B., Akpinarli, A., Kammertoens, T., Nassenstein, C., Braun, A., Blankenstein, T., and Kempermann, G. (2009a). CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979-3984. https://doi.org/10.4049/jimmunol.0801218
  61. Wolf, S.A., Steiner, B., Wengner, A., Lipp, M., Kammertoens, T., and Kempermann, G. (2009b). Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J. 23, 3121-3128. https://doi.org/10.1096/fj.08-113944
  62. Yirmiya, R., and Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immunity 25, 181-213. https://doi.org/10.1016/j.bbi.2010.10.015
  63. Zhang, Z., Wang, H., Zhang, G., Hu, D., Xiong, J., Xiong, N., Wang, T., Cao, X., and Mao, L. (2014). Proliferating cell nuclear antigen binds DNA polymerase-beta and mediates 1-methyl-4-phenylpyridinium-induced neuronal death. PLoS One 9, e106669. https://doi.org/10.1371/journal.pone.0106669
  64. Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., Cohen, H., Kipnis, J., and Schwartz, M. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268-275. https://doi.org/10.1038/nn1629

Cited by

  1. Relationship of systemic cytokine concentrations to cognitive function over two years in women with early stage breast cancer vol.301, 2016, https://doi.org/10.1016/j.jneuroim.2016.11.002
  2. Restricted CD4+ T cell receptor repertoire impairs cognitive function via alteration of Th2 cytokine levels vol.4, pp.1, 2017, https://doi.org/10.1080/23262133.2016.1256856