DOI QR코드

DOI QR Code

Photolytic Characteristics of TiO2 Treated by Atmospheric Pressure Dielectric Barrier Discharge

대기압 유전체배리어 방전으로 표면처리된 TiO2 분말의 광분해 특성

  • Kang, Jeong A (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Kim, Yoon Kee (Department of Advanced Materials Engineering, Hanbat National University)
  • 강정아 (한밭대학교 공과대학 신소재공학과) ;
  • 김윤기 (한밭대학교 공과대학 신소재공학과)
  • Received : 2016.06.17
  • Accepted : 2016.07.01
  • Published : 2016.08.27

Abstract

In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate $TiO_2$ powder. The photocatalytic activity of the $TiO_2$ powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused $TiO_2$ cleaned by APDBD improved to a level up to 0.32h-1 higher than the 30 % value of the initial $TiO_2$ powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which $TiO_2$ effectively adsorbed MB at every photolysis stage.

Acknowledgement

Supported by : Hanbat National University

References

  1. A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep., 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  2. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  3. M. Anpo and Y. Kubokawa, Res. Chem. Intermed., 8, 105 (1987). https://doi.org/10.1007/BF03155662
  4. N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic and T. Rajh. J. Am. Chem. Soc., 127, 1344 (2005). https://doi.org/10.1021/ja0458118
  5. T.-H. Kim, S.-W. Lee, G. Gyawali and Y.-H. Jo, Int. J. Appl. Ceram. Technol., 12, 577 (2015). https://doi.org/10.1111/ijac.12245
  6. G. Liu, L. Wang, H. G. Yang, H. M. Cheng and G. Q. Lu, J. Mater. Chem., 20, 831 (2010). https://doi.org/10.1039/B909930A
  7. A. Di Paola, L. Palmisano, M. Derrigo and V. Augugliaro, J. Phys. Chem. B, 101, 876 (1997). https://doi.org/10.1021/jp9623599
  8. K.-Y. Kim, J. Ryu, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, B.-K. Lee, D.-S. Park and C. Park, J. Korean Ceram. Soc., 45, 839 (2008). https://doi.org/10.4191/KCERS.2008.45.1.839
  9. I. G. Jo, C. W, Ji, C. Y. Choi, Y. S. Kim and Y. D. Kim, J. Korean Inst. Surf. Eng., 41, 240 (2008). https://doi.org/10.5695/JKISE.2008.41.5.240
  10. Y. K. Kim, M. Eichler and C.-P. Klages, Surf. Coat. Technol., 171, 321 (2003). https://doi.org/10.1016/S0257-8972(03)00294-9
  11. G. S. Selwyn, H. W. Herrmann, J. Park and I. Henins, Contrib. Plasma Phys., 6, 610 (2001).
  12. T. K. Le, D. Flahaut, H. Martinez, H. K. H. Nguyen and T. K. X. Huynh, Appl. Catal. B, 165, 260 (2015). https://doi.org/10.1016/j.apcatb.2014.10.024
  13. N. M. Jacob, P. Kuruva, G. Madras and T. Thomas, Ind. Eng. Chem. Res., 52, 16384 (2013). https://doi.org/10.1021/ie402727z
  14. C.-H. Yi, Y-H. Lee, D. W. Kim and G.-Y. Yeom, Surf. Coat. Technol., 163-164, 723 (2003). https://doi.org/10.1016/S0257-8972(02)00649-7
  15. T. Homola, J. Matousek. V. Medvecka, A. Zahoranova, M. Kormunda, D. Kovacik and M. Cernak, Appl. Surf. Sci., 258, 7135 (2012). https://doi.org/10.1016/j.apsusc.2012.03.188