DOI QR코드

DOI QR Code

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties

중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성

  • Lee, Yae Won (Department of Chemical Engineering, Inha University) ;
  • Yang, Hee Chun (Department of Chemical Engineering, Inha University) ;
  • Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
  • 이예원 (인하대학교 화학공학과) ;
  • 양희천 (인하대학교 화학공학과) ;
  • 김건중 (인하대학교 화학공학과)
  • Received : 2016.07.08
  • Accepted : 2016.07.12
  • Published : 2016.08.10

Abstract

In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Acknowledgement

Grant : BK21플러스

Supported by : 인하대학교

References

  1. T. Hyeon, S. Han, Y. E. Sung, K. W. Park, and Y. W. Kim, High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils, Angew. Chem. Int. Ed. Engl., 42, 4352-4356 (2003). https://doi.org/10.1002/anie.200250856
  2. C. A. Frysz, X. Shui, and D. D. L. Chung, Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell, J. Power Sources, 58, 41-54 (1996). https://doi.org/10.1016/0378-7753(95)02291-0
  3. M. Miranda-Herna'ndez, J. A. Ayala, and M. E. Rinco'n, Electrochemical storage of hydrogen in nanocarbon materials: electrochemical characterization of carbon black matrices, J. Solid State Electrochem., 7, 264-270 (2003). https://doi.org/10.1007/s10008-002-0335-y
  4. T. Gao, M. D. Woodka, B. S. Brunschwig, and N. S. Lewis, Applications and advances in electronic-nose technologies, Chem. Mater., 18, 5193-5202 (2006). https://doi.org/10.1021/cm060905x
  5. M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, and A. M. Bittner, Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes, Carbon, 46, 1829-1840 (2008). https://doi.org/10.1016/j.carbon.2008.07.025
  6. H. Li, R. Wang, and R. Cao, Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor, Microporous Mesoporous Mater., 111, 32-38 (2008). https://doi.org/10.1016/j.micromeso.2007.07.002
  7. J. M. Ko and K. M. Kim, Electrochemical properties of $MnO_2$/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys., 114, 837-841 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.047
  8. E. Raymundo-Pinero, V. Khomenko, E. Frackowiakm, and F. Beguin, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 152, A229-A235 (2005). https://doi.org/10.1149/1.1834913
  9. G.-X. Wang, B.-L. Zhang, Z.-L. Yu, and M.-Z. Qu, Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics, 176, 1169-1174 (2005). https://doi.org/10.1016/j.ssi.2005.02.005
  10. Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, and Y. Kuang, Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials, Diam. Relat. Mater., 15, 1478-1483 (2006). https://doi.org/10.1016/j.diamond.2005.11.009
  11. V. Subramanian, H. Zhu, and B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochem. Commun., 8, 827-832 (2006). https://doi.org/10.1016/j.elecom.2006.02.027
  12. A. B. Fuertes, C. Lota, and T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
  13. S. Han, K. Lee, S. Oh, and T. Hyeon, The effect of silica template structure on the pore structure of mesoporous carbons, Carbon, 41, 1049-1056 (2003). https://doi.org/10.1016/S0008-6223(02)00439-6
  14. J. Yu, S. B. Yoon, and G. S. Chai, Ordered uniform porous carbon by carbonization of sugars, Carbon, 39, 1442-1446 (2001). https://doi.org/10.1016/S0008-6223(01)00095-1
  15. M. Toupin, D. Blanger, I. R. Hill, and D. Quinn, Performance of experimental carbon blacks in aqueous supercapacitors, J. Power Sources, 140, 203-210 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.014
  16. S. A. Johnson, E. S. Brigham, P. J. Ollivier, and T. E. Mallouk, Effect of micropore topology on the structure and properties of zeolite polymer replicas, Chem. Mater., 9, 2448-2458 (1997). https://doi.org/10.1021/cm9703278
  17. T. Kyotani, T. Nagai, S. Inoue, and A. Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels, Chem. Mater., 9, 609-615 (1997). https://doi.org/10.1021/cm960430h
  18. R. Ryoo, S. H. Joo, and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 103, 7743-7746 (1999). https://doi.org/10.1021/jp991673a
  19. J. Lee, S. Yoon, T. Hyeon, S. M. Oh, and K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 2177-2178 (1999).
  20. T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, and N. A. Seaton, Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation, J. Phys. Chem. B, 106, 6523-6528 (2002). https://doi.org/10.1021/jp0200369
  21. S. Han, S. Kim, H. Lim, W. Choi, H. Park, J. Yoon, and T. Hyeon, New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids, Microporous Mesoporous Mater., 58, 131-135 (2003). https://doi.org/10.1016/S1387-1811(02)00611-X
  22. A.-H. Lu, W. Schmidt, A. Taguchi, B. Spliethoff, B. Tesche, and F. Schuth, Taking nanocasting one step further: replicating CMK-3 as a silica material, Angew. Chem. Int. Ed. Engl., 41, 3639-3642 (2002).
  23. X. F. Guo, Y. S. Kim, and G. J. Kim, Hydrogenation of chiral nitrile on highly ordered mesoporous carbon-supported Pd catalysts, Catal. Today, 150, 22-27 (2010). https://doi.org/10.1016/j.cattod.2009.04.022
  24. D. Park, S. Jeon, J. Y. Yang, S. D. Choi, and G. J. Kim, Fabrication of meso/macroporous carbon monolith and its application as a support for adsorptive separation of D-amino acid from racemates, Bull. Korean Chem. Soc., 35, 1720-1726 (2014). https://doi.org/10.5012/bkcs.2014.35.6.1720
  25. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Ordered mesoporous carbons, Adv. Mater., 13, 677-681 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  26. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 412, 169-172 (2001). https://doi.org/10.1038/35084046
  27. S. S. Kim and T. J. Pinnavaia, A low cost route to hexagonal mesostructured carbon molecular sieves, Chem. Commun., 2418-2419 (2001).
  28. S. B. Yoon, J. Y. Kim, and J. S. Yu, Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinylbenzene as precursor, Chem. Commun., 559-560 (2001).
  29. J. Lee, K. Sohn, and T. Hyeon, Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores, J. Am. Chem. Soc., 123, 5146-5147 (2001). https://doi.org/10.1021/ja015510n
  30. J. Lee, J. Kim, and T. Hyeon, A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon, Chem. Commun., 1138-1139 (2003).
  31. T. Kyotani, Control of pore structure in carbon, Carbon, 38, 269-286 (2000). https://doi.org/10.1016/S0008-6223(99)00142-6
  32. D. Gittins and I. F. Caruso, Multilayered polymer nanocapsules derived from gold nanoparticle templates, Adv. Mater., 12, 740-744 (2000).
  33. S. B. Yoon, K. Shon, J. Y. Kim, C. H. Shin, J. S. Yu, and T. Hyeon, Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures, Adv. Mater., 14, 19-21 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
  34. X. F. Guo, Y. S. Kim, and G. J. Kim, Fabrication of $SiO_2$, $Al_2O_3$, and $TiO_2$ microcapsules with hollow core and mesoporous shell structure, J. Phys. Chem. C, 113, 8313-8319 (2009). https://doi.org/10.1021/jp8108122