Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites

망간산화물/기능화된 그래핀 나노복합체에 기반한 고성능 슈퍼커패시터 개발

  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2016.06.30
  • Accepted : 2016.07.12
  • Published : 2016.08.10


In this report, $MnO_2$ nanoparticle-deposited functionalized graphene sheets were prepared and their superior electrochemical performances were demonstrated by cyclic voltammetry, galvanostatic charge-discharge, and impedance analysis. Ionic liquids were employed to functionalize the surface of reduced graphene oxides (RGOs), leading to prevention of the aggregation of RGO sheets and abundant growth sites for deposition of $MnO_2$ nanoparticles. As-prepared $MnO_2/RGO$ nanocomposites were characterized using scanning electron microscope, transition electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical properties of $MnO_2/RGO$ electrode were evaluated using $Na_2SO_4$ electrolyte under a three-electrode system. The $MnO_2/RGO$ electrode showed a high specific capacitance (251 F/g), a high rate capability (80.5% retention), and long-term stability (93.6% retention).


Supported by : 한국연구재단


  1. J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014).
  2. Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014).
  3. J.-M. Jeong, K. G. Lee, S.-J. Chang, J. W. Kim, Y.-K. Han, S. J. Lee, and B. G. Choi, Ultrathin sandwich-like $MoS_2$@N-doped carbon nanosheets for anodes of lithium ion batteries, Nanoscale, 7, 324-329 (2015).
  4. J.-K. Sun, E.-H. Um, and C.-T. Lee, Electrochemical characteristics of the activated carbon electrode modified with the microwave radiation in the electric double layer capacitor, Appl. Chem. Eng., 21, 11-17 (2010).
  5. R.-G. Oh, J.-E. Hong, W.-G. Yang, and K.-S. Ryu, Study of lithium ion capacitors using carbonaceous electrode utilized for anode in lithium ion batteries, Appl. Chem. Eng., 24, 489-548 (2013).
  6. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y.-S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
  7. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015).
  8. S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015).
  9. K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evolution of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012).
  10. M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials. Nat. Nanotechnol., 10, 313-318 (2015).
  11. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014).
  12. X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011).
  13. V. Aravindan, J. Gnanaraj, Y.-S. Lee, and S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors, Chem. Rev., 144, 11619-11635 (2014).
  14. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013).
  15. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012).
  16. M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015).
  17. H. Chen, S. Zhou, and L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interfaces, 6, 8621-8630 (2014).
  18. J. Zhang and J. W. Lee, Supercapacitor electrodes derived from carbon dioxide, ACS Sustainable Chem. Eng., 2, 735-740 (2014).
  19. S. Ye, J. Feng, and P. Wu, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode, ACS Appl. Mater. Interfaces, 5, 7122-7129 (2013).
  20. W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano. Lett., 11, 5165-5172 (2011).
  21. W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339 (1958).
  22. B. G. Choi and H. S. Park, Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage, ChemSusChem., 5, 709-715 (2012).
  23. B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S.-Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, and W. H. Hong, Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors, ACS Nano, 4, 2910-2918 (2010).
  24. W. Wei, X. Cui, W. Chen, and D. G. Ivey, Mananese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721 (2011).