DOI QR코드

DOI QR Code

Synthesis of a Platinum-Pincer Complex and Application to Catalytic Silylcyanation

백금 핀서 화합물의 합성 및 Silylcyanation 촉매반응에 대한 응용

  • Kim, Yun Tae (Department of Pharmaceutical Engineering, Hoseo University) ;
  • Yoon, Myeong Sik (Department of Pharmaceutical Engineering, Hoseo University)
  • 김윤태 (호서대학교 제약공학과) ;
  • 윤명식 (호서대학교 제약공학과)
  • Received : 2016.04.04
  • Accepted : 2016.05.24
  • Published : 2016.08.10

Abstract

A platinum(II) pincer complex composed of two six-membered fused metallacycles was directly synthesized using 1,3-bis(2-pyridyloxy)benzene and $K_2PtCl_4$. The structure of the complex was elucidated via NMR and X-ray crystallography analysis. The stable complex was formed due to the six-membered fused cycle structure around the Pt(II) center which reduced the bond angle strain. The complex was applied to the silylcyanation reaction of aldehydes and imines and showed an efficient catalytic activity with 99% yield.

Acknowledgement

Supported by : National Research Foundation

References

  1. G. V. Koten, Tuning the reactivity of metals held in a rigid ligand environment, Pure Appl. Chem., 61, 1681-1694 (1989). https://doi.org/10.1351/pac198961101681
  2. M. P. H. Rietveld, D. M. Grove, and G.V. Koten, Recent advances in the organometallic chemistry of aryldiamine anions that can function as n,c,n'-and c,n,n'-chelating terdentate "pincer" ligands : a n overview, New J. Chem., 21, 751-771 (1997).
  3. M. Albrecht and G. V. Koten, Platinum group organometallics based on "pincer" complexes: Sensors, switches, and catalysts, Angew. Chem. Int. Ed., 40, 3751-3781 (2001).
  4. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes, Proc. Natl. Acad. Sci. USA, 105, 16071-16076 (2008). https://doi.org/10.1073/pnas.0804071105
  5. W. P. To, K. T. Chan, G. S. M. Tong, C. Ma, W. M. Kwok, X. Guan, K. H. Low, and C. M. Che, Strongly luminescent gold(III) complexes with long-lived excited states: High emission quantum yields, energy up-conversion, and nonlinear optical properties, Angew. Chem. Int. Ed., 52, 6648-6652 (2013). https://doi.org/10.1002/anie.201301149
  6. H. Zhang, B. Zhang, Y. Li, and W. Sun, Acid-sensitive Pt(II) 2,6-Di(pyridin-2-yl)pyrimidin-4(1H)-one complexes, Inorg. Chem., 48, 3617-3627 (2009). https://doi.org/10.1021/ic801919g
  7. B. Soro, S. Stoccoro, G. Minghetti, A. Zucca, M. A. Cinellu, S. Gladiali, M. Manassero, and M. Sansoni, Synthesis of the first C-2 cyclopalladated derivatives of 1,3-Bis(2-pyridyl)benzene. Crystal structures of [Hg(N-C-N)Cl], [Pd(N-C-N)Cl], and $[Pd_2(N-C-N)_2({\mu}-OAc)]_2[Hg)_2Cl_6]$. Catalytic activity in the Heck reaction, Organometallics, 24, 53-61 (2005). https://doi.org/10.1021/om040102o
  8. D. J. Cardenas and A. M. Echavarren, Divergent behavior of palladium(II) and platinum(II) in the metalation of 1,3-Di(2-pyridyl) benzene, Organometallics, 18, 3337-3341 (1999). https://doi.org/10.1021/om990125g
  9. M. Q. Slagt, G. R. Mguez, M. M. P. Grutters, R. J. M. K. Gebbink, W. Klopper, L. W. Jenneskens, M. Lutz, A. L. Spek, and G. V. Koten, Synthesis and properties of para-substituted NCN-pincer palladium and platinum complexes, Chem. Eur. J., 10, 1331-1344 (2004). https://doi.org/10.1002/chem.200305336
  10. L. A. V. D. Kuil, D. M. Grove, R. A. Gossage, J. W. Zwikker, L. W. Jenneskens, W. Drenth, and G. V. Koten, Mechanistic as pects of the Kharasch addition reaction catalyzed by organonickel(II) complexes containing the monoanionic terdentate aryldiamine ligand system $[C_6H_2(CH_2NMe_2)2-2,6-R-4]$, Organometallics, 16, 4985-4994 (1997). https://doi.org/10.1021/om970061e
  11. N. Selander and J. K. Szab, Catalysis by palladium pincer complexes, Chem. Rev., 111, 2048-2076 (2010).
  12. D. J. D. Geest, B. J. O. Keefe, and P. J. Steel, Cyclometallated compounds. XIII. Cyclopalladation of 2-phenoxypyridine and structurally-related compounds J. Organomet. Chem., 579, 97-105 (1999). https://doi.org/10.1016/S0022-328X(98)01203-0
  13. B. J. O. Keefe and P. J. Steel, Cyclometalated compounds. XVI. Double cyclopalladations of bis(2-pyridyloxy)naphthalenes. Kinetic versus thermodynamic control of regiospecificity, Organometallics, 22, 1281-1292 (2003). https://doi.org/10.1021/om0207461
  14. A. J. Canty, N. J. Minchin, B. W. Skelton, and A. H. White, Cyclopalladation to form planar tridentate [N-C-N]-intramolecular co-ordination systems involving pyridine donor groups, including ligand synthesis and X-ray structural studies, J. Chem. Soc. Dalton Trans., 1987(6), 1477-1483 (1987).
  15. M. S. Yoon, R. Ramesh, J. Kim, D. Ryu, and K. H. Ahn, Chiral Pt(II)/Pd(II) pincer complexes that show C-H---Cl hydrogen bonding: Synthesis and applications to catalytic asymmetric aldol and silylcyanation reactions, J. Organomet. Chem., 691, 5927-5934 (2006). https://doi.org/10.1016/j.jorganchem.2006.09.055
  16. J. S. Fossey and C. J. Richards, Catalysis of aldehyde and imine silylcyanation by platinum and palladium NCN-pincer complexes, Tetrahedron Lett., 44, 8773-8776 (2003). https://doi.org/10.1016/j.tetlet.2003.09.201
  17. M. S. Yoon, D. Ryu, J. Kim, and K. H. Ahn, Palladium pincer complexes with reduced bond angle strain: efficient catalysts for the Heck reaction, Organometallics, 25, 2409-2411 (2006). https://doi.org/10.1021/om0601246
  18. B. K.-W. Chiu, M. H.-W. Lam, D. Y.-K. Lee, and W.-Y. Wong, Synthesis, characterization and spectroscopic studies of cyclometalated platinum(II) complexes containing meta-bis(2-pyridoxy) benzene, J. Organomet. Chem., 689, 2888-2899 (2004). https://doi.org/10.1016/j.jorganchem.2004.06.006
  19. W. C. Groutas and D. Felker, Synthetic applications of cyanotrimethylsilane, iodotrimethylsilane, azidotrimethylsilane, and methylthiotrimethylsilane, Synthesis, 1980(11), 861-868 (1980). https://doi.org/10.1055/s-1980-29241
  20. W. Lidy and W. Sundermeyer, Spaltungsreaktionen des trimethylsilylcyanids, eine neue darstellungsmethode fur O-(Trimethylsilyl) cyanhydrine, Chem. Ber., 106, 587-593 (1973). https://doi.org/10.1002/cber.19731060224
  21. R. Noyori, S. Murata, and M. Suzuki, Trimethysilyl triflate in organic synthesis, Tetrahedron, 37, 3899-3910 (1981). https://doi.org/10.1016/S0040-4020(01)93263-6
  22. A. E. Vougioukas and H. B. Kagan, Lanthanides as Lewis-acid catalysts in aldol addition, cyanohydrin-forming and oxirane ring opening reactions, Tetrahedron Lett., 28, 5513-5516 (1987). https://doi.org/10.1016/S0040-4039(00)96767-4
  23. J. A. Vale, W. M. Faustino, P. H. Menezes, and G. F. de Sa, Lanthanide dithiocarbamate complexes: Efficient catalysts for the cyanosilylation of aldehydes, J. Braz. Chem. Soc., 17, 829-831 (2006). https://doi.org/10.1590/S0103-50532006000500002
  24. J. M. Brunel and I. P. Holmes, Chemically catalyzed asymmetric cyanohydrin syntheses, Angew. Chem. Int. Ed., 43, 2752-2778 (2004). https://doi.org/10.1002/anie.200300604
  25. M. North, Synthesis and applications of non-racemic cyanohydrins, Tetrahedron Asymmetry, 14, 147-176 (2003). https://doi.org/10.1016/S0957-4166(02)00825-X
  26. N. H. Khan, R. I. Kureshy, S. H. R. Abdi, S. Agrawal, and R. V. Jasra, Metal catalyzed asymmetric cyanation reactions, Coord. Chem. Rev., 252, 593-623 (2008). https://doi.org/10.1016/j.ccr.2007.09.010
  27. M. Hayashi, Y. Miyamoto, and T. Inoue, Oguni, N. Enantioselective trimethylsilylcyanation of some aldehydes catalyzed by chiral Schiff base-titanium alkoxide complexes, J. Org. Chem., 58, 1515-1522 (1993). https://doi.org/10.1021/jo00058a037
  28. Y. Jiang, X. Zhou, W. Hu, L. Wu, and A. Mi, Asymmetric synthesis XXII: Asymmetric catalytic trimethylsilylcyanation of benzaldehyde by novel Ti(IV)-chiral schiff base complexes, Tetrahedron Asymmetry, 6, 405-408 (1995). https://doi.org/10.1016/0957-4166(95)00025-K
  29. Y. Jiang, L. Gong, X. Feng, W. Hu, W. Pan, Z. Li, and A. Mi, Salen-$Ti(OR)_4$ complex catalyzed trimethylsilylcyanation of aldehydes, Tetrahedron, 53, 14327-14338 (1997). https://doi.org/10.1016/S0040-4020(97)00984-8
  30. P. Pitchaimani, K. M. Lo, and K. P. Elango, Synthesis, crystal structures, luminescence properties and catalytic application of lanthanide(III) piperidine dithiocarbamate complexes, Polyhedron, 93, 8-16 (2015). https://doi.org/10.1016/j.poly.2015.03.012
  31. J. Xia, J. Xu, Y. Fan, T. Song, L. Wang, and J. Zheng, Indium metal-organic frameworks as high-performance heterogeneous catalysts for the synthesis of amino acid derivatives, Inorg. Chem., 53, 10024-10026 (2014). https://doi.org/10.1021/ic501492c
  32. V. V. R. Reddy, B. Saritha, R. Ramu, R. Varala, and A. Jayashree, $Zn(OAc)_2{\cdot}2H_2O$-catalyzed one-pot efficient synthesis of amino nitriles, Asian. J. Chem., 26, 7439-7442 (2014). https://doi.org/10.14233/ajchem.2014.16794
  33. B. Karmakar and J. Banerji, $K_2PdCl_4$ catalyzed efficient multicomponent synthesis of ${\alpha}$-aminonitriles in aqueous media, Tetrahedron Lett., 51, 2748-2750 (2010). https://doi.org/10.1016/j.tetlet.2010.03.059
  34. M. L. Kantam, K. Mahendar, B. Sreedhar, and B. M. Choudary, Synthesis of ${\alpha}$-aminonitriles through Strecker reaction of aldimines and ketoimines by using nanocrystalline magnesium oxide, Tetrahedron, 64, 3351-3360 (2008). https://doi.org/10.1016/j.tet.2008.01.128
  35. Y.-L. Hou, R. W.-Y. Sun, X.-P. Zhou, J.-H. Wang, and D. A. Li, Copper(I)/copper(II)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes, Chem. Commun., 50, 2295-2297 (2014). https://doi.org/10.1039/c3cc47996j