DOI QR코드

DOI QR Code

Adsorptive Removal of Hazardous Organics from Water with Metal-organic Frameworks

금속-유기 골격체(Metal-organic Frameworks)를 활용한 물로부터의 유해 유기물의 흡착 제거

  • Seo, Pill Won (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Song, Ji Yoon (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Jhung, Sung Hwa (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • 서필원 (경북대학교 화학과 및 청정나노소재 연구소) ;
  • 송지윤 (경북대학교 화학과 및 청정나노소재 연구소) ;
  • 정성화 (경북대학교 화학과 및 청정나노소재 연구소)
  • Received : 2016.05.18
  • Accepted : 2016.06.25
  • Published : 2016.08.10

Abstract

Removing hazardous materials from water resources is very important for efficient utilization of the resources, and adsorptive removal is regarded as a competitive technology when good adsorbents with high capacity/selectivity are available. Metal-organic framework (MOF), composed of both organic and inorganic (metallic) species, have been tried for various adsorptions because of huge surface area/pore volume, well-defined pore structure, and facile functionalization. In this review, we summarized technologies on adsorptive removal of hazardous organics from water mainly using MOFs as adsorbents. Instead of reporting high adsorption capacity or rate, we summarized mechanisms of interaction between adsorbates (organics) and adsorbents (MOFs) and methods to modify or functionalize MOFs for effective adsorptions. We expect for readers of this review to understand needed characteristics of adsorbents for the adsorptive removal, functionalization of MOFs for effective adsorption and so on. Moreover, they might have an idea on storage and delivery of organics via understanding of the mechanism of adsorption and interaction.

Acknowledgement

Supported by : 경북대학교

References

  1. The Chosun Ilbo (2014. 11. 28-29).
  2. Y. Luo, W. Guo, H. H. Ngo et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 619, 473-474 (2014).
  3. J. Rivera-Utrilla, M. Sanchez-Polo, M. A. Ferro-Garcia et al., Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93, 1268-1287 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.059
  4. D. W. Kolpin, E. T. Furlong, M. T. Meyer et al., Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance, Environ. Sci. Technol., 36, 1202-1211 (2002). https://doi.org/10.1021/es011055j
  5. C. Jung, A. Son, N. Her et al., Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review, J. Ind. Eng. Chem., 27, 1-11 (2015). https://doi.org/10.1016/j.jiec.2014.12.035
  6. N. A. Khan, Z. Hasan, and S. H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review, J. Hazard. Mater., 244, 444-456 (2013).
  7. Z. Hasan and S. H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283, 329-339 (2015). https://doi.org/10.1016/j.jhazmat.2014.09.046
  8. H. Furukawa, K. E. Cordova, M. O'Keeffe et al., The chemistry and applications of metal-organic frameworks, Science, 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
  9. S. H. Jhung, N. A. Khan, and Z. Hasan, Analogous porous metal-organic frameworks: Synthesis, stability and application in adsorption, Cryst. Eng. Comm., 14, 7099-7109 (2012). https://doi.org/10.1039/c2ce25760b
  10. E. Barea, C. Montoro, and J. A. R. Navarro, Toxic gas removal -metal-organic frameworks for the capture and degradation of toxic gases and vapours, Chem. Soc. Rev., 43, 5419-5430 (2014). https://doi.org/10.1039/C3CS60475F
  11. J. B. DeCoste and G. W. Peterson, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014). https://doi.org/10.1021/cr4006473
  12. B. V. de Voorde, B. Bueken, J. Denayer et al., Adsorptive separation on metal-organic frameworks in the liquid phase, Chem. Soc. Rev., 43, 5766-5788 (2014). https://doi.org/10.1039/C4CS00006D
  13. H. Wu, Q. Gong, D. H. Olson et al., Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev., 112, 836-868 (2012). https://doi.org/10.1021/cr200216x
  14. N. A. Khan, Z. Hasan, and S. H. Jhung, Adsorption and removal of sulfur or nitrogen-containing compounds with metal-organic frameworks (MOFs), Adv. Porous Mater., 1, 91-102 (2013). https://doi.org/10.1166/apm.2013.1002
  15. I. Ahmed and S. H. Jhung, Adsorptive desulfurization and denitrogenation using metal-organic frameworks, J. Hazard. Mater., 301, 259-276 (2016). https://doi.org/10.1016/j.jhazmat.2015.08.045
  16. N. A. Khan and S. H. Jhung, Remarkable adsorption capacity of $CuCl_2$-loaded porous vanadium benzenedicarboxylate for benzothiophene, Angew. Chem. Int. Ed., 51, 1198-1201 (2012). https://doi.org/10.1002/anie.201105113
  17. N. A. Khan, J. W. Jun, J. H. Jeong et al., Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene, Chem. Commun., 47, 1306-1308 (2011). https://doi.org/10.1039/C0CC04759G
  18. B. V. de Voorde, M. Boulhout, F. Vermoortele et al., N/S-Heterocyclic contaminant removal from fuels by the mesoporous metal-organic framework MIL-100: The role of the metal ion, J. Am. Chem. Soc., 135, 9849-9856 (2013). https://doi.org/10.1021/ja403571z
  19. I. Ahmed, N. A. Khan, and S. H. Jhung, Graphite oxide/metal-organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels, Inorg. Chem., 52, 14155-14161 (2013). https://doi.org/10.1021/ic402012d
  20. E. M. Dias and C. Petit, Towards the use of metal-organic frameworks for water reuse: A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field, J. Mater. Chem. A, 3, 22484-22506 (2015). https://doi.org/10.1039/C5TA05440K
  21. B. N. Bhadra, K. H. Cho, N. A. Khan et al., Liquid-phase adsorption of aromatics over a metal-organic framework and activated carbon: Effects of hydrophobicity/Hydrophilicity of adsorbents and solvent polarity, J. Phys. Chem. C, 119, 26620-26627 (2015). https://doi.org/10.1021/acs.jpcc.5b09298
  22. I. Ahmed and S. H. Jhung, Composites of metal-organic frameworks: Preparation and application in adsorption, Mater. Today., 17, 136-146 (2014). https://doi.org/10.1016/j.mattod.2014.03.002
  23. S. M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks, Chem. Rev., 112, 970-1000 (2012). https://doi.org/10.1021/cr200179u
  24. Z. Hasan, M. Tong, B. K. Jung et al., Adsorption of pyridine over amino-functionalized metal-organic frameworks: Attraction via hydrogen bonding versus base-base repulsion, J. Phys. Chem. C, 118, 21049-21056 (2014). https://doi.org/10.1021/jp507074x
  25. B, N. Bhadra, I. Ahmed, and S. H. Jhung, Remarkable adsorbent for phenol removal from fuel: Functionalized metal-organic framework, Fuel, 174, 43-48 (2016). https://doi.org/10.1016/j.fuel.2016.01.071
  26. B. Liu, F. Yang, Y. Zou et al., Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding, J. Chem. Eng. Data, 59, 1476-1482 (2014). https://doi.org/10.1021/je4010239
  27. C. Li, Z. Xiong, J. Zhang et al., The strengthening role of the amino group in metal-organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption, J. Chem. Eng. Data, 60, 3414-3422 (2015). https://doi.org/10.1021/acs.jced.5b00692
  28. I. Ahmed and S. H. Jhung, Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups, J. Hazard. Mater., 283, 544-550 (2015). https://doi.org/10.1016/j.jhazmat.2014.10.002
  29. I. Ahmed and S. H. Jhung, Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/ MIL-101 composite through a combined effect of improved porosity and hydrogen bonding, J. Hazard. Mater., 314, 318-325 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.041
  30. P. W. Seo, I. Ahmed, and S. H. Jhung, Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal-organic framework having a free carboxylic acid group, Chem. Eng. J., 299, 236-243 (2016). https://doi.org/10.1016/j.cej.2016.04.060
  31. P. W. Seo, I. Ahmed, and S. H. Jhung, Adsorption of indole and quinoline from a model fuel on functionalized MIL-101: Effects of H-bonding and coordination, Phys. Chem. Chem. Phys., 18, 14787-14794 (2016). https://doi.org/10.1039/C6CP02001A
  32. Z. Hasan, N. A. Khan, and S. H. Jhung, Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks, Chem. Eng. J., 284, 1406-1413 (2016). https://doi.org/10.1016/j.cej.2015.08.087
  33. Z. Hasan, E. J. Choi, and S. H. Jhung, Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups, Chem. Eng. J., 219, 537-544 (2013). https://doi.org/10.1016/j.cej.2013.01.002
  34. A. Gallego, A. Garcia-Cabanes, M. Carrascosa et al., Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures, J. Phys. Chem. C, 120, 407-415 (2016).
  35. I. Ahmed, N. A. Khan, Z. Hasan et al., Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion, J. Hazard. Mater., 250, 37-44 (2013).
  36. I. Ahmed, Z. Hasan, and N. A. Khan, Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs, Appl. Catal. B, 129, 123-129 (2013). https://doi.org/10.1016/j.apcatb.2012.09.020
  37. N. A. Khan, Z. Hasan, and S. H. Jhung, Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: Remarkable adsorbents for the removal of benzothiophene from liquid fuel, Chem. Commun., 52, 2561-2564 (2016). https://doi.org/10.1039/C5CC08896H
  38. N. A. Khan, Z. Hasan, and S. H. Jhung, Ionic liquids supported on metal organic frameworks: Remarkable adsorbents for adsorptive desulfurization, Chem. Eur. J., 20, 376-380 (2014). https://doi.org/10.1002/chem.201304291
  39. N. A. Khan and S. H. Jhung, Scandium-triflate/metal-organic frameworks: Remarkable adsorbents for desulfurization and denitrogenation, Inorg. Chem., 54, 11498-11504 (2015). https://doi.org/10.1021/acs.inorgchem.5b02118
  40. N. A. Khan and S. H. Jhung, Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid, Fuel Process. Technol., 100, 49-54 (2012). https://doi.org/10.1016/j.fuproc.2012.03.006
  41. Y. K. Hwang, D. Y. Hong, J. S. Chang et al., Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 47, 4144-4148 (2008). https://doi.org/10.1002/anie.200705998
  42. J. W. Jun, M. Tong, B. K. Jung et al., Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: Plausible mechanism of adsorption and water purification, Chem. Eur. J., 21, 347-354 (2015). https://doi.org/10.1002/chem.201404658
  43. K. Liu, S. Zhang, X. Hu et al., Understanding the adsorption of PFOA on MIL-101(Cr)-Based anionic-exchange metal-organic frameworks: Comparing DFT calculations with aqueous sorption experiments, Environ. Sci. Technol., 49, 8657-8665 (2015). https://doi.org/10.1021/acs.est.5b00802
  44. F. Tan, M. Liu, K. Li et al., Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene, Chem. Eng. J., 281, 360-367 (2015). https://doi.org/10.1016/j.cej.2015.06.044
  45. E. Haque, J. E. Lee, I. T. Jang et al., Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates, J. Hazard. Mater., 181, 535-542 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.047
  46. E. Haque, J. W. Jun, and S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185, 507-511 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.035
  47. S. Kumar, G. Verma, W. Y. Gao et al., Anionic metal-organic framework for selective dye removal and $CO_2$ fixation, Eur. J. Inorg. Chem., DOI: 10.1002/ejic.201600218. https://doi.org/10.1002/ejic.201600218
  48. H. Hahm, S. Kim, H. Ha et al., Charged functional group effects on a metal-organic framework for selective organic dye adsorptions, Cryst. Eng. Comm., 17, 8418-8422 (2015). https://doi.org/10.1039/C5CE01512J
  49. K.-Y. A. Lin, H. Yang, and W.-D. Lee, Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB), RSC Adv., 5, 81330-81340 (2015). https://doi.org/10.1039/C5RA08189K
  50. Z. Hasan, J. Jeon, and S. H. Jhung, Adsorptive removal of naprox en and clofibric acid from water using metal-organic frameworks, J. Hazard. Mater., 209, 151-157 (2012).
  51. E. Y. Park, Z. Hasan, N. A. Khan et al., Adsorptive removal of bisphenol-A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate, J. Nanosci. Nanotechnol., 13, 2789-2794 (2013). https://doi.org/10.1166/jnn.2013.7411
  52. B. K. Jung, Z. Hasan, and S. H. Jhung, Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework, Chem. Eng. J., 234, 99-105 (2013). https://doi.org/10.1016/j.cej.2013.08.110
  53. N. A. Khan, B. K. Jung, Z. Hasan et al., Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks, J. Hazard. Mater., 282, 194-200 (2015). https://doi.org/10.1016/j.jhazmat.2014.03.047
  54. B. K. Jung, J. W. Jun, Z. Hasan et al., Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8, Chem. Eng. J., 267, 9-15 (2015). https://doi.org/10.1016/j.cej.2014.12.093
  55. Y. S. Seo, N. A. Khan, and S. H. Jhung, Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework, Chem. Eng. J., 270, 22-27 (2015). https://doi.org/10.1016/j.cej.2015.02.007
  56. K.-Y. A. Lin and W.-D. Lee, Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole, Chem. Eng. J., 284, 1017-1027 (2016). https://doi.org/10.1016/j.cej.2015.09.075
  57. C.-S. Wu, Z.-H. Xiong, C. Li et al., Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution, RSC Adv., 5, 82127-82137 (2015). https://doi.org/10.1039/C5RA15497A
  58. F.-X. Qin, S.-Y. Jia, Y. Liu et al., Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks, Desalin. Water Treat., 54, 93-102 (2015). https://doi.org/10.1080/19443994.2014.883331
  59. K.-Y. A. Lin, and H.-A. Chang, Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8), Water Air Soil Pollut., 226, 10 (2015). https://doi.org/10.1007/s11270-014-2280-7
  60. C. Y. Lee, Y.-S. Bae, N. C. Jeong et al., Kinetic separation of propene and propane in metal-organic frameworks: Controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios, J. Am. Chem. Soc., 133, 5228-5231 (2011). https://doi.org/10.1021/ja200553m
  61. H.-N. Wang, F.-H. Liu, X.-L. Wang, K.-Z. Shao et al., Three neutral metal-organic frameworks with micro and meso-pores for adsorption and separation of dyes, J. Mater. Chem. A, 1, 13060-13063 (2013). https://doi.org/10.1039/c3ta13242k
  62. M. Tong, D. Liu, Q. Yang et al., Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids, J. Mater. Chem. A, 1, 8534-8537 (2013). https://doi.org/10.1039/c3ta11807j
  63. V. Bon, N. Kavoosi, I. Senkovska et al., Tolerance of flexible MOFs toward repeated adsorption stress, ACS Appl. Mater. Interfaces, 8, 6770-6777 (2016). https://doi.org/10.1021/acsami.6b00608
  64. S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, and W.-S. Ahn, Zeolitic imidazolate frameworks: Synthesis, functionalization, and catalytic/ adsorption applications, Catal. Surv. Asia, 18, 101-127 (2014). https://doi.org/10.1007/s10563-014-9169-8
  65. C. Yang, U. Kaipa, Q. Z. Mather et al., Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc., 133, 18094-18097 (2011). https://doi.org/10.1021/ja208408n
  66. N. A. Khan, J. W. Yoon, J.-S. Chang, and S. H. Jhung, Enhanced adsorptive desulfurization with flexible metal-organic frameworks in the presence of diethyl ether and water, Chem. Commun., 52, 8667-8670 (2016). https://doi.org/10.1039/C6CC03976F

Cited by

  1. Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.26
  2. Metal–organic framework technologies for water remediation: towards a sustainable ecosystem vol.6, pp.12, 2018, https://doi.org/10.1039/C8TA00264A
  3. Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Amino-Acid-Derived Metal-Organic Framework pp.09476539, 2018, https://doi.org/10.1002/chem.201803547
  4. Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.611