DOI QR코드

DOI QR Code

Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization

중질유 혹은 감압잔사유의 개질 반응 : Aquathermolysis와 Demetallization

  • 이후철 (호서대학교 화학공학과) ;
  • 박승규 (호서대학교 화학공학과)
  • Received : 2016.07.11
  • Accepted : 2016.07.14
  • Published : 2016.08.10

Abstract

It has been estimated that the Earth has nearly 1.688 trillion barrels of crude oil, which will last 53.3 years at current extraction rates. The organization of petroleum exporting countries (OPEC) group forecasted that the oil prices will not jump to triple-digit territory within a decade, but it can quickly increase as the political issue for reducing oil production appears. With the potential of serious shortage of conventional hydrocarbon resources, the heavy oil, one of unconventional hydrocarbon resources including oil sand and natural bitumen has attracted worldwide interest. The heavy oil contains heavy hydrocarbon compounds, commonly called as resins and asphaltenes, with long carbon chains more than sixty carbon atoms. The high content of heavier fraction corresponds with the high molecular weight, viscosity, and boiling point. Physicochemical properties of residues from vacuum distillation of conventional oil, referred to as vacuum residues (VR) were similar to those of heavy oil. For the development of heavy oil reserves, reducing the heavy oil viscosity is the most important. In this article, commercially employed aquathermolysis processes and their application to VR upgrading are discussed. VR contains transition metals such as Ni and V, but these metals should be eliminated in advance for further refining. Recent studies on demetallization technologies for VR are also reviewed.

Acknowledgement

Supported by : ISTK (Korea Research Council for Industrial Science and Technology)

References

  1. J. Ban, J. L. Arellano, R. F. Aguilera, and M. Tallet, OPEC 2015 World Oil Outlook, 1-361 (2015).
  2. US Ministry of Defense, Global Strategic Trends-Out to 2045, Fifth Edition (2014).
  3. R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, US Department of Interior & US Geological Survey Open File-Report 2007-1084 (2007).
  4. British Petroleum, BP Statistical Review of World Energy, June (2015).
  5. L. Hughes and J. Rudolph, Future world oil production: growth, plateau, or peak?, Curr. Opin. Environ. Sustain., 3, 335-234 (2011). https://doi.org/10.1016/j.cosust.2011.05.001
  6. O. Muraza and A. Galadima, Aquathermolysis of heavy oil: A review and perspective on catalyst development, Fuel, 157, 219-231 (2015). https://doi.org/10.1016/j.fuel.2015.04.065
  7. N. L. Madureira, Key Concepts in Energy, pp. 125-126, Springer International Publishing (2014).
  8. S. Sorrell, R. Miller, R. Bentley, and J. Speirs, Oil futures: A comparison of global supply forecasts, Energy Policy, 38, 4990-5003 (2010). https://doi.org/10.1016/j.enpol.2010.04.020
  9. V. Lam, G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, and J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels, Fuel Process. Technol., 98, 30-38 (2012). https://doi.org/10.1016/j.fuproc.2012.01.022
  10. World Energy Council, 2010 Survey of Energy Resources, 123-150 (2010).
  11. A. Bera and T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Appl. Energy, 151, 206-226 (2015). https://doi.org/10.1016/j.apenergy.2015.04.031
  12. O. Muraza, Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction, J. Anal. Appl. Pyrolysis, 114, 1-10 (2015). https://doi.org/10.1016/j.jaap.2015.04.005
  13. H. R. Hao, H. J. Su, G. Chen, J. R. Zhao, and L. Hong, Viscosity reduction of heavy oil by aquathermolysis with coordination complex at low temperature, The Open Fuels Energy Sci. J., 8, 93-98 (2015). https://doi.org/10.2174/1876973X01508010093
  14. P. R. Kapadia, M. S. Kallos, and I. D. Gates, A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen, Fuel Process. Technol., 131, 270-289 (2015). https://doi.org/10.1016/j.fuproc.2014.11.027
  15. M. Khalil, R. L. Lee, and N. Liu, Hematite nanoparticles in aquathermolysis: A desulfurization study of thiophene, Fuel, 145, 214-220 (2015). https://doi.org/10.1016/j.fuel.2014.12.047
  16. H. C. Kim, W. J. Jeong, W. C. Lee, and S. K. Park, Demetallization by MCM-48 from asphaltene of vacuum residual oils: Analysis by UV-visible spectroscopy, Asian J. Chem., 27, 4288-4290 (2015). https://doi.org/10.14233/ajchem.2015.19516
  17. L. Lin, F. Zeng, and Y. Gu, A circular solvent chamber model for simulating the VAPEX heavy oil recovery process, J. Pet. Sci. Eng., 118, 27-39 (2014). https://doi.org/10.1016/j.petrol.2014.03.010
  18. H. H. Kiasari, A. H. Sarapardeh, S. Mighani, A. H. Mohammadi, and B. S. Sola, Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir, Fuel, 122, 82-93 (2014). https://doi.org/10.1016/j.fuel.2013.12.057
  19. Y. H. Shokrlu, Y. Maham, X. Tan, T. Babadagli, and M. Gray, Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions, Fuel, 105, 397-407 (2013). https://doi.org/10.1016/j.fuel.2012.07.018
  20. N. Mosavat and F. Torabi, Experimental evaluation of the performance of carbonated water injection (CWI) under various operating conditions in light oil systems, Fuel, 123, 274-284 (2014). https://doi.org/10.1016/j.fuel.2014.01.077
  21. D. W. Zhao, J. Wang, and I. D. Gates, Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs, Fuel, 112, 50-59 (2013). https://doi.org/10.1016/j.fuel.2013.05.025
  22. F. R. Ahmadun, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170, 530-551 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044
  23. J. Peng, G. Q. Tang, and A. R. Kovscek, Oil chemistry and its impact on heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 47-59 (2009). https://doi.org/10.1016/j.petrol.2009.01.005
  24. R. C. K. Wong and B. B. Maini, Gas bubble growth in heavy oil-filled sand packs under undrained unloading, J. Pet. Sci. Eng., 55, 259-270 (2007). https://doi.org/10.1016/j.petrol.2006.08.006
  25. J. Wang, Y. Z. Yuan, L. Zhang, and R. Wang, The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 69-74 (2009). https://doi.org/10.1016/j.petrol.2009.01.007
  26. D. Yuan, J. Hou, Z. Song, Y. Wang, M. Luo, and Z. Zheng, Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by $N_2$ flooding of fractured-cavity carbonate reservoir, J. Pet. Sci. Eng., 129, 15-22 (2015). https://doi.org/10.1016/j.petrol.2015.03.016
  27. J. B. Hyne, J. W. Greidanus, J. D. Tyrer, et al., In: 2nd Int. Conf. "The Future of Heavy Crude and Tar Sands." Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
  28. Y. H. Shokrlu and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng., 119, 210-220 (2014). https://doi.org/10.1016/j.petrol.2014.05.012
  29. M. F. Ali and S. Abbas, A review of methods for the demetallization of residual fuel oils, Fuel Process. Technol., 87, 573-584 (2006). https://doi.org/10.1016/j.fuproc.2006.03.001
  30. J. G. Reynolds, Removal of nickel and vanadium from heavy crude oils by exchange reactions, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 79-80 (2004).
  31. F. Iskandar, E. Dwinanto, M. Abdullah, Khairurrijal, and O. Muraza, Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction, KONA Powder Part. J., 33, 3-16 (2016). https://doi.org/10.14356/kona.2016005
  32. F. Zhao, X. Wang, Y. Wang, and Y. Shi, The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions, J. Chem. Pharm. Res., 6(5), 2037-2041 (2014).
  33. S. K. Maity, J. Ancheyta, and G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review, Energy Fuels, 24, 2809-2816 (2010). https://doi.org/10.1021/ef100230k
  34. Y. Wang, Y. Chen, J. He, P. Li, and C. Yang, Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: $Fe^{3+}$ and $Mo^{6+}$, Energy Fuels, 24, 1502-1510 (2010). https://doi.org/10.1021/ef901339k
  35. C. Wu, G. L. Lei, C. J. Yao, K, J. Sun, P. Y. Gai, and Y. B. Cao, Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst, J. Fuel Chem. Technol., 38, 684-690 (2010). https://doi.org/10.1016/S1872-5813(11)60004-2
  36. H. X. Xu and C. S. Pu, Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic, J. Fuel. Chem. Technol., 39, 606-610 (2011). https://doi.org/10.1016/S1872-5813(11)60037-6
  37. H. Wang, Y. Wu, L. He, and Z. Liu, Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil, Energy Fuels, 26, 6518-6527 (2012). https://doi.org/10.1021/ef301064b
  38. P. Jing, Q. Li, M. Han, D. Sun, L. Jia, and W. Fang, Effect of $Ni^{2+}$ and $Sn^{2+}$ modified $SO_4\;^{2-}$/$ZrO_2$ solid super-acid catalysts on visbreaking of heavy petroleum oil, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007).
  39. D. H. Freeman and T. C. O'Haner, Derivative spectrophotometry of petroporphyrins, Energy Fuels, 4, 688-694 (1990). https://doi.org/10.1021/ef00024a012
  40. C. Ovalles, P. R. Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, Am. Chem. Soc. Div. Fuel. Chem., 48, 59-60 (2003).
  41. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, B. P. Tumanyan, L. E. Foss, I. P. Kosachev, R. Z. Musin, A. I. Ramazanova, and A. V. Vakhin, Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aqiathermolysis, Chem. Technol. Fuels Oils, 50, 315-326 (2014). https://doi.org/10.1007/s10553-014-0528-y
  42. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, G. P. Kayukova, and N. N. Petrukhina, Promising aspects of heavy oil and native asphalt conversion under field conditions, Chem. Technol. Fuels Oils, 50, 185-188 (2014). https://doi.org/10.1007/s10553-014-0506-4
  43. M. Bahram and P. Kobra, Determination of Vanadyl Porphyrins by Liquid-liquid microextraction and nano-baskets of p-tert-Calix[4 ]arene bearing di-[N-(X)sulfonye carboxamide] and di-(1-propoxy) in ortho-cone conformation, Chem. Res. Chin. Univ., 28(5), 807-813 (2012).
  44. J. N. R. Olvera, G. J. Gutierrez, J. A. R. Serrano, A. M. Ovando, V. G. Febles, and L. D. B. Arceo, Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil, Catal. Commun., 43, 131-135 (2014). https://doi.org/10.1016/j.catcom.2013.09.027
  45. M. A. Banares and J. L. G. Fierro, Selective oxidation of methane to formaldehyde on supported molybdate catalysts, Catal. Letters, 17, 205-211 (1993). https://doi.org/10.1007/BF00766143
  46. J. S. F. Pereira, D. P. Moraes, F. G. Antes, L. O. Diehl, M. F. P. Santos, R. C. I. Guimaraes, T. C. O. Fonseca, V. L. Dressler, and E. M. M. Flores, Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion, Microchem. J., 96, 4-11 (2010). https://doi.org/10.1016/j.microc.2009.12.016
  47. Y. Chen, T. Wang, J. Lu, and C. Wu, The viscosity reduction of nano-keggin-$K_3PMo_{12}O_{40}$ in catalytic aquathermolysis of heavy oil, Fuel, 88, 1426-1434 (2009). https://doi.org/10.1016/j.fuel.2009.03.011
  48. Y. Chen, C. Yang, and Y. Wang, Gemini catalyst for catalytic aquathermolysis of heavy oil, J. Anal. Appl. Pyrolysis, 89, 159-165 (2010). https://doi.org/10.1016/j.jaap.2010.07.005
  49. H. Fan, Y. Zhang, and Y. Lin, The catalytic effects of minerals on aquathermolysis of heavy oils, Fuel, 83, 2035-2039 (2004). https://doi.org/10.1016/j.fuel.2004.04.010
  50. S. Merissa, P. Fitriani, F. Iskandar, M. Abdullah, and Khairurrijal, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, Padjadjaran International Physics Symposium, PIPS-2013, 131-134 (2013).
  51. A. S. Junaid, W. Wang, C. Street, M. Rahman, M. Gersbach, S. Zhou, W. McCaffrey, and S. M. Kuznicki, Viscosity reduction and upgrading of Athabasca oilsands bitumen by natural zeolite cracking, Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng., 4, 609-614 (2010).
  52. O. Korkuna, R. Leboda, J. S. Zieba, T. Vrublevska, V. M. Gunko, and J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Microporous Mesoporous Mater., 87, 243-254 (2006). https://doi.org/10.1016/j.micromeso.2005.08.002
  53. K. A. Gould, Oxidative demetallization of petroleum asphaltenes and residua, Fuel, 59, 733-736 (1980). https://doi.org/10.1016/0016-2361(80)90029-0
  54. A. Atesa, G. Azimic, K. H. Choi, W. H. Green, and M. T. Timko, The role of catalyst in supercritical water desulfurization, Appl. Catal. B, 147, 144-155 (2014). https://doi.org/10.1016/j.apcatb.2013.08.018
  55. M. Sattarin, H. Modarresi, H. Talachi, and M. Teymori, Solvent deasphalting of vacuum residue in a bench-scale unit, Pet. Coal, 48(3), 14-19 (2006).
  56. R. N. Magomedov, A. Z. Popova, T. A. Maryutina, K. M. Kadiev, and S. N. Khadzhiev, Current status and prospects of demetallization of heavy petroleum feedstock (Review), Pet. Chem., 55, 267-290 (2015).
  57. H. Jo, S. G. Moun, Y. M. Jo, and Y. Chung, A patent analysis on impurity removal and catalysts for crude oil purification, Clean Technol., 16, 1-11 (2010).
  58. A. K. Lee, A. M. Murray, and J. G. Reynolds, Metallopetroporphyrins as process indicators: Separation of petroporphyrins in green river oil shale pyrolysis products, Fuel Sci. Technol. Int., 13, 1081-1097 (1995). https://doi.org/10.1080/08843759508947723
  59. A. Treibs, On the chromophores of porphyrin systems, Ann. N. Y. Acad. Sci., 206, 97-115 (1973). https://doi.org/10.1111/j.1749-6632.1973.tb43207.x
  60. H. Fukuyama, S. Teraia, M. Uchidab, J. L. Cano, and J. Ancheyta, Active carbon catalyst for heavy oil upgrading, Catal. Today, 98, 207-215 (2004). https://doi.org/10.1016/j.cattod.2004.07.054
  61. P. Bruggemann, F. Baitalow, P. Seifert, B. Meyer, and H. Schlichting, Behaviour of heavy metals in the partial oxidation of heavy fuel oil, Fuel Process. Technol., 91, 211-217 (2010). https://doi.org/10.1016/j.fuproc.2009.09.020
  62. M. Soylak, A. U. Karatepe, L. Elci, and M. Dogan, Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using Amberlite XAD-1180, Turk. J. Chem., 27, 235-242 (2003).
  63. L. Li, N. Tang, Y. Wang, W. Cen, J. Liu, and Y. Zhou, Investigation of hexagonal mesoporous silica-supported composites for trace moisture adsorption, Nano Scale Res. Letters, 10, 1-7 (2015). https://doi.org/10.1186/1556-276X-10-1
  64. S. Wang, X. Xu, J. Yang, and J. Gao, Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation, Fuel Process. Technol., 92, 486-492 (2011). https://doi.org/10.1016/j.fuproc.2010.11.001
  65. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55, 77-93 (2004). https://doi.org/10.1016/j.carbpol.2003.08.005
  66. I. Lukec, K. S. Bionda, and D. Lukec, Prediction of sulphur content in the industrial hydrotreatment process, Fuel Process. Technol., 89, 292-300 (2008). https://doi.org/10.1016/j.fuproc.2007.11.032
  67. S. B. Seo, T. Kajiuchi, D. I. Kim, S. H. Lee, and H. K. Kim, Preparation of water soluble chitosan blendmers and their application to removal of heavy metal ions from wastewater, Macromol. Res., 10, 103-107 (2002). https://doi.org/10.1007/BF03218298
  68. J. Luan, A. Li, T. Su, and X. Li, Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China, J. Hazard. Mater., 166, 1109-1114 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.023
  69. N. N. Nassar, M. M. Husein, and P. P. Almao, Ultradispersed particles in heavy oil: Part II, sorption of $H_2$S(g), Fuel Process. Technol., 91, 169-174 (2010). https://doi.org/10.1016/j.fuproc.2009.09.008
  70. H. O. Bakare, A. O. Esan, and O. M. Olabemiwo, Characterisation of Agbabu natural bitumen and its fractions using Fourier transform infrared spectrometry, Chem. Mater. Res., 7, 1-11 (2015).
  71. Y. Yamada, S. Matsumoto, H. Kakiyama, and H. Honda, Removal of heavy metal contained in petroleum heavy oil, Japanese Patent 54-110206 (1979).