DOI QR코드

DOI QR Code

Inhibitory Effect of Chlorine Dioxide on Phenoloxidase Activation of the Indianmeal Moth, Plodia interpunctella

화랑곡나방(Plodia interpunctella)의 페놀옥시데이즈 활성화에 대한 이산화염소의 억제 효과

  • Kim, Minhyun (Department of Bioresource Sciences, Andong National University) ;
  • Kwon, Hyeok (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Wook (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 김민현 (안동대학교 생명자원과학과) ;
  • 권혁 (고려대학교 생명공학부) ;
  • 김욱 (고려대학교 생명공학부) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2016.03.23
  • Accepted : 2016.05.24
  • Published : 2016.06.30

Abstract

Phenoloxidase (PO) is an oxidizing enzyme and plays crucial roles in insect immunity and cuticle sclerotization. High oxidizing activity of chlorine dioxide gives effective control activities against microbes and insect pests. These allowed us to assess any inhibitory activity of chlorine dioxide against PO with respect to insect immunity. PO activities of the Indeanmeal moth, Plodia interpunctella, was detected in both hemocytes and plasma. Upon bacterial challenge, PO activity was significantly increased especially in plasma. However, the immune challenge coupled with chlorine dioxide treatment did not enhance PO activity. When different chlorine dioxide concentrations were incubated with activated PO by immune challenge, they did not inhibit the activated PO. These results indicate that chlorine dioxide suppresses PO activity by inhibiting PO activation.

Acknowledgement

Supported by : 농림수산식품기술평가원

References

  1. Bell, C. H. and D. J. Walker (1973) Diapause induction in Ephestia elutella and Plodia interpunctella (Lepidoptera:Pyralidae) with a dawn dusk lighting system. J. Stored Prod. Res. 9:149-158. https://doi.org/10.1016/0022-474X(73)90022-2
  2. Binder, M., V. Mahler, B. Hayek, W. R. Sperr and M. Scheller (2001) Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J. Immunol. 167:5470-5477. https://doi.org/10.4049/jimmunol.167.9.5470
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye finding. Anal. Biochem. 72:248-254.
  4. Burmester, T. (2002) Origin and evolution of arthropod hemocyanins and related proteins. J. Comp. Physiol. B 172:95-107. https://doi.org/10.1007/s00360-001-0247-7
  5. Cerenius, L. and K. Soderhall (2004) The prophenoloxidaseactivating system in invertebrates. Immunol. Rev. 198:116-126. https://doi.org/10.1111/j.0105-2896.2004.00116.x
  6. Cerenius, L., B. L. Lee and K. Soderhall (2008) The proPOsystem: pros and cons for its role in invertebrate immunity. Trends Immunol. 29:263-271. https://doi.org/10.1016/j.it.2008.02.009
  7. Cline, L. D. (1978) Penetration of seven common flexible packaging materials by larvae and adults of eleven species of stored-product insects. J. Econ. Entomol. 71:726-729. https://doi.org/10.1093/jee/71.5.726
  8. Decker, H. and N. Terwilliger (2000) Cops and robbers: putative evolution of copper oxygen-binding proteins. J. Exp. Biol. 203:1777-1782.
  9. Don, G. (1998) The chlorine dioxide handbook. Am. Water Works Assoc. 3-4.
  10. Fontenot, E. A., F. H. Arthur, J. R. Nechols and M. R. Langemeier (2013) Economic feasibility of methoprene applied as a surface treatment and as an aerosol alone and in combination with two other insecticides, J. Econ. Entomol. 106:1503-1510. https://doi.org/10.1603/EC12470
  11. Gibbs, S.G., J. J. Lowe, P. W. Smith and A. L. Hewlett (2012) Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33:495-499. https://doi.org/10.1086/665320
  12. Gonzalez-Santoyo, I. and A. Cordoba-Aguilar (2011) Phenoloxidase:a key component of the insect immune system. Entomol. Exp. Appl. 142:1-16.
  13. Grieshop, M. J., P. W. Flinn and J. R. Nechols (2010) Effects of intra- and interpatch host density on egg parasitism by three species of Trichogramma. J. Insect Sci. 10:99.
  14. Hallman, G. J. and T. W. Phillips (2008) Ionizing irradiation of adults of Angoumois grain moth (Lepidoptera: Gelechiidae) and Indianmeal moth (Lepidoptera: Pyralidae) to prevent reproduction, and implications for a generic irradiation treatment for insects. J. Econ. Entomol. 101:1051-1056. https://doi.org/10.1093/jee/101.4.1051
  15. Herrero, S., B. Oppert and J. Ferre (2001) Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Appl. Environ. Microbiol. 67:1085-1089. https://doi.org/10.1128/AEM.67.3.1085-1089.2001
  16. Jaenicke, E. and H. Decker (2003) Tyrosinases from crustaceans form hexamers. Biochem. J. 371:515-523. https://doi.org/10.1042/bj20021058
  17. Jiang, H., Y. Wang, C. Ma and M. R. Kanost (1997) Subunit composition of pro-phenol oxidase from Manduca sexta:molecular cloning of subunit ProPO-P1. Insect Biochem. Mol. Biol. 27:835-850. https://doi.org/10.1016/S0965-1748(97)00066-0
  18. Jiang, H., Y. Wang and M. R. Kanost (1998) Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria inducible protein similar to Drosophila easter. Proc. Natl. Acad. Sci. USA 95:12220-12225. https://doi.org/10.1073/pnas.95.21.12220
  19. Kan, H., C. H. Kim, H. M. Kwon, J. W. Park, K. B. Roh, H. Lee, B. J. Park, R. Zhang, J. Zhang, K. Soderhall, N. C. Ha and B. L. Lee (2008) Molecular control of phenoloxidaseinduced melanin synthesis in an insect. J. Biol. Chem. 283:25316-25323. https://doi.org/10.1074/jbc.M804364200
  20. Kanost, M. R. (1999) Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23:291-301. https://doi.org/10.1016/S0145-305X(99)00012-9
  21. Kanost, M. R., H. Jiang and X. Q. Yu (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198:97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
  22. Kim, I. H., A. Y. Song, J. Han, K. H. Park and S. C. Min (2014) Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil. J. Food Sci. 79:E2023-E2030. https://doi.org/10.1111/1750-3841.12642
  23. Kumar, S., J. Park, E. Kim, J. Na, Y. S. Chun, H. Kwon, W. Kim and Y. Kim (2015) Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 124:48-59. https://doi.org/10.1016/j.pestbp.2015.04.003
  24. Liu, Y. B. (2011) Oxygen enhances phosphine toxicity for postharvest pest control. J. Econ. Entomol. 104:1455-1461. https://doi.org/10.1603/EC10351
  25. Nam, Y., J. Ji, J. H. Na, Y. S. Chun and M. I. Ryoo (2011) Biological control of indianmeal moth and rice weevil by parasitoids with reference to the intraspecific competition pattern. J. Econ. Entomol. 104:693-701. https://doi.org/10.1603/EC10242
  26. Nappi, A. J. and B. M. Christensen (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem. Mol. Biol. 35:443-459. https://doi.org/10.1016/j.ibmb.2005.01.014
  27. Ogata, N. (2007) Denaturation of protein by chlorine dioxide:oxidative modification of tryptophan and tyrosine residues. Biochemistry 46:4898-4911. https://doi.org/10.1021/bi061827u
  28. Ogata, N. (2012) Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. J. Gen. Virol. 93: 2558-2568. https://doi.org/10.1099/vir.0.044263-0
  29. Prevett, P. F. (1971) Some laboratory observations on the development of two African strains of Plodia interpunctella (Hbner) (Lepidoptera: Pyralidae) with particular reference to the induction of diapause. J. Stored Prod. Res. 7:253-260. https://doi.org/10.1016/0022-474X(71)90023-3
  30. Ress, D. (2004) Insect of Stored Products. CSIRO Publishing, Collingwood, Australia.
  31. Ryne, C., G. P. Svensson and C. Lfstedt (2001) Mating disruption of Plodia interpunctella in small-scale plots: effects of pheromone blend, emission rates, and population density. J. Chem. Ecol. 27:2109-2024. https://doi.org/10.1023/A:1012251106037
  32. SAS Institute, Inc. (1989) SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
  33. Shrestha, S. and Y. Kim (2008) Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38:99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  34. Shrestha, S. and Y. Kim (2009) Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci. Biotechnol. Biochem. 73:2077-2084 https://doi.org/10.1271/bbb.90272
  35. Sugumaran, M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 15:2-9. https://doi.org/10.1034/j.1600-0749.2002.00056.x
  36. Volk, C. J., R. Hofmann, C. Chauret, G. A. Gagnom, G. Ranger and R. C. Andrews (2002) Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. J. Environ. Eng. Sci. 1:323-330. https://doi.org/10.1139/s02-026
  37. Wijayaratne, L. K. W. and P. G. Fields (2012) Effects of rearing conditions, geographical origin, and selection on larval diapause in the Indianmeal moth, Plodia interpunctella. J. Insect Sci. 12:119.
  38. Zhao, P., J. Li, Y. Wang and H. Jiang (2007) Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 37:952-959. https://doi.org/10.1016/j.ibmb.2007.05.001