Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns

옥수수에서 기장테두리진딧물의 온도 의존적 발육과 산자 특성

  • Park, Jeong Hoon (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kwon, Soon Hwa (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kim, Tae Ok (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Oh, Sung Oh (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kim, Dong-Soon (The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University)
  • 박정훈 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 권순화 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 김태옥 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 오성오 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 김동순 (제주대학교 아열대농업생명과학연구소)
  • Received : 2016.03.22
  • Accepted : 2016.05.13
  • Published : 2016.06.01


Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.


Rhopalosiphum padi;Oviposition rate;Physiological age;Longevity;Model;Parameter


Supported by : RDA


  1. Asin, L., Pons, X., 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environ. Entomol. 30, 1127-1134.
  2. Auad, A.M., Alves, S.O., Carvalho, C.A., Silva, D.M., Resende, T.T., Verissimo, B.A., 2009. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphidiade) fed with signal grass. Fla. Entomol. 92, 568-576.
  3. Bale, J.S., Ponder, K.L., Pritchard, J., 2007. Coping with stress, pp. 287-309. In: H.F. Van Emden, R. Harrington (Eds.), Aphids as crop pests. CAB International, Wallingford, UK.
  4. Blackman, R.L., Eastop, V.F., 1985. Aphids on the world's crops: An identification guide, John Wiley & Sons, England, pp. 341-342.
  5. Choi, K.S., Kim, D.-S., 2016. Effect of temperature on the fecundity and longevity of Ascotis selenaria (Lepidoptera: Geometridae): developing an oviposition model. J. Econ. Entomol. 2016. 1-6 doi: 10.1093/jee/tow029.
  6. Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. The Texas A&M University Press.
  7. Descamps, L.R., Chopa, C.S., 2011. Population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on different cereal crops from the semiarid pampas of Argentina under laboratory conditions. Chil. J. Agr. Res. 71, 390-394.
  8. Eastop, V.F., 1983. The biology of the principle virus vectors, in: Plumb, R.T., Thresh, J.M. (Eds.), Plant virus epidemiology. Blackvell Scientific Publication, Oxford, pp. 115-132.
  9. Emden van H.F., Harrington, R., 2007. Aphids as Crop Pests. CABI, USA.
  10. Erying, H., 1935. The activated complex in chemical reactions. J. Chem. Physics 3, 107-115.
  11. Frazier, M.R., Huey, R.B., Berrigan, D., 2006. Thermodynamics constrains the evolution of insect population growth rates: "Warmer is better". Am. Nat. 168, 512-520.
  12. Ikemoto, T., Takai, K., 2000. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 29, 671-682.
  13. Jandel Scientific, 2002. Tabel curve 2D. Automated curve fitting and equation discovery; version 4.0. Dandel Scientific, San Rafel, CA.
  14. Kim, H.-J., 2008. A Systematic study of the tribe Aphidini (Hemiptera: Aphididae) in the Korean peninsula, with discussion of their phylogenetic relationships based on molecular markers and morphology. Seoul National University, Doctor Thesis.
  15. Kim, D.-S., Lee, J-H., Yiem, M.S. 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae), and its stage emergence models. Environ. Entomol. 30, 298-305.
  16. Kim D.-S., Lee J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Eco. Model. 162, 145-153.
  17. Kim, D.-S., Choi, K.S., Jang, Y.S., Song, J.H., 2009. The effects of elevated temperatures on the population phenology and abundance of citrus pests in Jeju, Korea. International Symposium on Climate Change and Insect Pest, Ramada Plaza Jeju Hotel, Jeju, Republic of Korea. pp. 28-30.
  18. Korea Biodiversity Information System (KBIS), N.D. Distribution map of Rhopalosiphum padi in Korea. (accessed on 5 March, 2016).
  19. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.
  20. Lee, K.H., Shin, W.H., Kim, J.H., Lee, J.W., 1996. Mass rearing technology of Aphidus Colemani viereck (Hymenoptera: Aphidiidae) using Rhopalosiphum padi as a host aphid. Proceeding of KSAE (Korean Society of Applied Entomology) in 1996 (Autumn), pp. 65 (in Korean with title translated into English by the authors).
  21. Lee, R.E. Jr., 1991. Principle of insect low temperature tolerance, In: Lee, R.E. Jr., Denlinger, D.L. (Eds.), Insects at low temperature. Chapman and Hall, New York and London, pp. 17-46.
  22. Ma, G., Hoffmann, A.A., Ma, C.-S. 2015. Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Bio. 218, 2289-2296.
  23. Macfadyen, S., Kriticos, D.J., 2012. Modelling the geographical range of a species with variable life-history. PLoS One 7(7), e40313. doi:10.1371/journal.pone.0040313.
  24. MAFF., 1982. Reference Book 186. Cereal pests. HMSO, London. 124 pp.
  25. Powell, S.J., Bale, J.S., 2005. Low temperature acclimatd population of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. J. Exp. Bio. 208, 2615-2620.
  26. SAS Institute, 1999 SAS $OnlinDoc^{(R)}$. Versin 8, SAS Institute Inc., Cary, NC. USA.
  27. Sengonca, V.C., Hoffmann, A., Kleinhenz, B., 1994. Laboruntersuchungen zur entwicklung, lebensdauer und fruchtbarkeit der getreideblattlausarten Sitobion avenae (F.) und Rhopalosiphum padi (L.) (Horn., Aphididae) bei verschiedenen tieferen temperaturen. J. Appl. Ent. 117, 224-233.
  28. Song, J.H., Kang, S.H., Lee, K.S., Yiem, S.O., Han, W.T., 2000. Survey for the pest of major crops on Jeju Island. Final research report of Cheju Provincial Institute for Agricultural Research (in Korean with title translated into English by the authors).
  29. Taheri, S., Razmjou, J., Rastegari, N., 2010. Fecundity and development rate of the bird cherry-oat Aphid, Rhopalosiphum padi (L) (Hom.: Aphididae) on six wheat cultivars. Plant Protect. Sci. 46, 72-78.
  30. Villanueva, B., J.R., Strong, F.E., 1964. Laboratory Studies on the Biology of Rhopalosiphum padi (Homoptera: Aphidae). Ann. Entomol. Soc. Am. 57, 609-613.
  31. Wagner, T.L., WU, H.-I., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling Distributions of Insect Development Time: A Literature Review and Application of the Weibull Function. Ann. Entomol. Soc. Am. 77, 475-487.
  32. Weibull, W.A., 1951. Statistical distribution function of wide applicability. J. Appl. Mech. 18, 293-196.

Cited by

  1. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley vol.20, pp.3, 2017,