DOI QR코드

DOI QR Code

Fatty Acid Composition of Different tissues of Spodoptera exigua Larvae and a Role of Cellular Phospholipase A2

파밤나방 유충의 조직별 지방산 구성과 세포성 인지질분해효소의 역할

  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Seunghee (Department of Bioresource Sciences, Andong National University) ;
  • Seo, Seunghwan (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kunwoo (Department of Bioresource Sciences, Andong National University)
  • 김용균 (안동대학교 생명자원과학과) ;
  • 이승희 (안동대학교 생명자원과학과) ;
  • 서승환 (안동대학교 생명자원과학과) ;
  • 김건우 (안동대학교 생명자원과학과)
  • Received : 2016.03.03
  • Accepted : 2016.05.12
  • Published : 2016.06.01

Abstract

Eicosanoids are a group of C20 oxygenated polyunsaturated fatty acids (PUFAs). To monitor biosynthetic precursors of these PUFAs, this study extracted fatty acids from different tissues of the beet armyworm, Spodoptera exigua, and assessed their compositions using GC/MS. Fifth instar larvae were dissected to isolate different tissues of gut, fat body, hemocytes, and integument. From each tissue, total lipids were extracted and fractionated into neutral lipid (NL), glycolipid (GL), and phospholipid (PL). Most tissues contained palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3). However, their compositions were different among tissues and lipid types. Fat body and hemocytes possessed other type of fatty acids such as myristic acid (14:0) and three unknown fatty acids. Among lipid types, PL contained relatively high levels of linolenic acid than NL and GL, while it had lower saturated fatty acids. Total unsaturated fatty acid composition was varied among tissues and lipid types. PL was rich in unsaturated fatty acids in fat body, gut, and hemocytes. There was a significant influence of calcium-independent phospholipase $A_2$ ($iPLA_2$) on maintaining fatty acid composition because RNA interference of $iPLA_2$ expression significantly modified fatty acid compositions in NL and PL. However, this study did not detect arachidonic acid, a main eicosanoid biosynthesis precursor, in all tissues. This suggests an alternative biosynthesis of eicosanoids in insects, which is distinct from the biosynthetic pathway of mammals.

Keywords

Eicosanoid;Fatty acid;Phospholipase;Spodoptera exigua

Acknowledgement

Supported by : 농림수산식품기술평가원

References

  1. Barbour, S.E., Kapur, A., Deal, C.L., 1999. Regulation of phosphatidylcholine homeostasis by calcium-independent phospholipase $A_2$. Biochim. Biophys. Acta 1439, 77-88. https://doi.org/10.1016/S1388-1981(99)00078-5
  2. Bade, M.L., 1964. Biosynthesis of fatty acids in the roach, Eurycotis floridana. J. Insect Physiol. 10, 333-341. https://doi.org/10.1016/0022-1910(64)90016-2
  3. Balsinde, J., Balboa, M.A., Dennis, E.A., 1997. Antisense inhibition of group VI $Ca^{2+}$-independent phospholipase $A_2$ blocks phospholipid remodeling in murine P388D1 macrophages. J. Biol. Chem. 272, 29317-29321. https://doi.org/10.1074/jbc.272.46.29317
  4. Blomquist, G.J., Borgeson, C.E., Vundla, M., 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 21, 99-106. https://doi.org/10.1016/0020-1790(91)90069-Q
  5. Burke, J.E., Dennis, E.A., 2009. Phospholipase $A_2$ structure/function, mechanism, and signaling. J. Lipid Res. 50, 5237-5242.
  6. Cripps, C., Borgeson, C., Blomquist, G.J., de Renobales, M., 1990. The ${\Delta}^{12}$ desaturase from the house cricket Acheta domesticus (Orthoptera: Gryllidae): Characterization and form of substrate. Arch. Biochem. Biophys. 278, 46-51. https://doi.org/10.1016/0003-9861(90)90229-R
  7. Dadd, R.H., Kleinjan, J.E., 1979. Essential fatty acid for the mosquito Culex pipiens: arachidonic acid. J. Insect Physiol. 25, 495-502. https://doi.org/10.1016/S0022-1910(79)80008-6
  8. Destephano, D.B., Brady, U.E., Lovins, R.E., 1974. Synthesis of prostaglandin by reproductive tissue of the male house cricket, Acheta domesticus. Prostaglandins 6, 71-79. https://doi.org/10.1016/S0090-6980(74)80042-0
  9. Fast, P., 1971. Insect lipids. Prog. Chem. Fats Other Lipids 11, 181-242.
  10. Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 226, 497-509.
  11. Gadelhak, G.G., Pedibhotla, V.K., Stanley-Samuelson, D.W., 1995. Eicosanoid biosynthesis by hemocytes from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 25, 743-749. https://doi.org/10.1016/0965-1748(95)00014-M
  12. Howard, R.W., Stanley-Samuelson, D.W., 1996. Fatty acid composition of fat body and Malpighian tubules of the tenebrionid beetle, Zophobas atratus: significance in eicosanoid-mediated physiology. Comp. Biochem. Physiol. B 115, 429-437. https://doi.org/10.1016/S0305-0491(96)00161-7
  13. Jurenka, R.A., de Renobales, M., Blomquist, G.J., 1987. De novo biosynthesis of polyunsaturated fatty acids in the cockroach, Periplaneta americana. Arch. Biochem. Biophys. 255, 184-193. https://doi.org/10.1016/0003-9861(87)90309-2
  14. Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., Blomquist, G.J., 1988. De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochim. Biophys. Acta 963, 21-27. https://doi.org/10.1016/0005-2760(88)90333-5
  15. Jurenka, R.A., Pedibhotla, V.K., Stanley, D.W., 1999. Prostaglandin production in response to bacterial infection in true armyworm larvae. Arch. Insect Biochem. Physiol. 41, 225-232. https://doi.org/10.1002/(SICI)1520-6327(1999)41:4<225::AID-ARCH6>3.0.CO;2-0
  16. Kim, Y., 2014. Development and application of novel biopesticides using insect immunosuppression, in: Park, Y., Chun, I., Kim Y., Lim, U.T., Lim, J. (Eds.), Horticultural crops: development and application of novel technologies. Institute of Andong National University Agricultural Science and Technology, Andong, Korea, pp. 38-112.
  17. Park, B., Kim, Y., 2010. Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 105, 156-163. https://doi.org/10.1016/j.jip.2010.06.003
  18. Park, J., Stanley, D., Kim, Y., 2014. Roles of peroxinectin in $PGE_2$-mediated cellular immunity in Spodoptera exigua. PLoS ONE 9, e105717. https://doi.org/10.1371/journal.pone.0105717
  19. Park, Y., Kumar, S., Kanumuri, R., Stanley, D., Kim, Y., 2015. A novel calcium-independent cellular $PLA_2$ acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66, 13-23. https://doi.org/10.1016/j.ibmb.2015.09.012
  20. Pedibhotla, V.K., Sarath, G., Sauer, J.R., Stanley-Samuelson, D.W., 1995. Prostaglandin biosynthesis and subcellular localization of prostaglandin H synthase activity in the lone star tick Amblyomma americanum. Insect Biochem. Mol. Biol. 25, 1027-1039. https://doi.org/10.1016/0965-1748(95)00039-X
  21. Petzel, D.H. and Stanley-Samuelson, D.W. 1992. Inhibition of eicosanoid biosynthesis modulates basal fluid secretion in the Malpighian tubules of the yellow fever mosquito (Aedes aegypti). J. Insect Physiol. 38, 1-8. https://doi.org/10.1016/0022-1910(92)90016-7
  22. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  23. Shrestha, S., Kim, Y., 2009. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci. Biotechnol. Biochem. 73, 2077-2084. https://doi.org/10.1271/bbb.90272
  24. Shrestha, S., Park, Y., Stanley, D., Kim, Y., 2010. Genes encoding phospholipase $A_2$ mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56, 324-332. https://doi.org/10.1016/j.jinsphys.2009.11.008
  25. Stanley, D., Kim, Y., 2014. Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
  26. Stanley-Samuelson, D.W., Dadd, R.H., 1981. Arachidonic acid and other tissue fatty acids of Culex pipiens reared with various concentrations of dietary arachidonic acid. J. Insect Physiol. 27, 571-578. https://doi.org/10.1016/0022-1910(81)90103-7
  27. Stanley-Samuelson, D.W., Dadd, R.H., 1984. Polyunsaturated fatty acids in the lipids from adult Galleria mellonella reared on diets to which only one unsaturated fatty acid had been added. Insect Biochem. 14, 321-327. https://doi.org/10.1016/0020-1790(84)90067-2
  28. Stanley-Samuelson, D.W., Loher, W., 1983. Arachidonic and other long-chain polyunsaturated fatty acids in spermatophores and spermathecae of Teleogryllus commodus: significance in prostaglandin-mediated reproductive behavior. J. Insect Physiol. 29, 41-45. https://doi.org/10.1016/0022-1910(83)90104-X
  29. Stanley-Samuelson, D.W., Ogg, C.L., 1994. Prostaglandin biosynthesis by fat body from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 24, 481-491. https://doi.org/10.1016/0965-1748(94)90043-4
  30. Stanley-Samuelson, D.W., Jurenka, R.A., Blomquist, G.J., Loher, W., 1986. De novo biosynthesis of prostaglandins by the Australian field cricket, Teleogryllus commodus. Comp. Biochem. Physiol. C 85, 303-307. https://doi.org/10.1016/0742-8413(86)90198-2
  31. Stanley-Samuelson, D.W., Jensen, E., Nickerson, K.W., Tiebel, K., Ogg, C.L., Howard, R.W., 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proc. Natl. Acad. Sci. USA 88, 1064-1068. https://doi.org/10.1073/pnas.88.3.1064
  32. Toolson, E.C., Ashby, P.D., Howard, R.W., Stanley-Samuelson, D.W., 1994. Eicosanoids mediate control of thermoregulatory sweating in the cicada, Tibicen dealbatus (Insecta: Homoptera). J. Comp. Physiol. B 164, 278-285. https://doi.org/10.1007/BF00346443
  33. Van Kerkhove, E., Pirotte, P., Petzel, D.H., Stanley-Samuelson, D.W., 1995. Eicosanoid biosynthesis inhibitors modulate basal fluid secretion rates in the Malpighian tubules of the ant, Formica polyctena. J. Insect Physiol. 41, 435-441. https://doi.org/10.1016/0022-1910(94)00109-T
  34. Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase $A_2$-generated activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 371, 205-210. https://doi.org/10.1042/bj20021603

Cited by

  1. An Insect Prostaglandin E2 Synthase Acts in Immunity and Reproduction vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.01231