DOI QR코드

DOI QR Code

A Freeze-drying Formulation and Target Specificity of Double-stranded RNA-expressing Bacteria to Control Insect Pests

Double-stranded RNA 발현 세균의 동결건조 제형화와 적용 대상 해충 선택성

  • Kim, Eunseong (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 김은성 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2016.02.01
  • Accepted : 2016.03.10
  • Published : 2016.06.01

Abstract

Double-stranded RNA (dsRNA) has been applied to control insect pests by its suppressive activity against specific target genes. Integrin is a heterodimer (${\alpha}$ and ${\beta}$) transmembrane protein and plays a critical role in cell-to-cell or cell-to-extracellular matrix interactions in eukaryotes. Suppression of ${\beta}$ subunit integrin gene expression by its specific dsRNA (= dsINT) induces significant mortality against target insects. Furthermore, a recombinant bacterium expressing dsINT is potent to kill target insects. However, it is necessary to develop a formulation technique of the dsRNA-expressing bacteria to apply the bacterial insecticide against field populations. This study formulated the recombinant bacteria by freeze-drying and tested its control efficacy against target insects. The formulation maintained significant insecticidal activity against last instar larvae of Spodoptera exigua. While a commercial Bacillus thuringiensis (Bt) insecticide exhibited only about 60% insecticidal activity against S. exigua last instar, an addition of the dsINT-expressing bacterial formulation significantly enhanced the Bt insecticidal activity. The dsINT-expressing bacterial formulation exhibited relative selectivity to target insects depending on sequence similarity. These results indicate that a freeze-dried form of dsRNA-expressing bacteria keeps its insecticidal activity.

Keywords

dsRNA;insecticide;Spodoptera exigua;recombinant bacteria

Acknowledgement

Grant : 곤충 PLA2 활성억제물질을 이용한 맞춤형 해충 방제제 개발

Supported by : 안동대학교 산학협력단

References

  1. Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2007b. Neuroglian on hemocyte surfaces is involved in homophilic and heterophilic interactions of the innate immune system of Manduca sexta. Dev. Comp. Immunol. 31, 1159-1167. https://doi.org/10.1016/j.dci.2007.03.002
  2. Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2008. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system. Dev. Comp. Immunol. 32, 365-379. https://doi.org/10.1016/j.dci.2007.07.007
  3. Park, Y., Ahn, S.J., Vogel, H., Kim, Y., 2014. Integrin ${\beta}$ subunit and its RNA interference in immune and developmental processes of the Oriental tobacco budworm, Helicoverpa assulta. Dev. Comp. Immunol. 47, 59-67. https://doi.org/10.1016/j.dci.2014.06.017
  4. Park, Y., and Kim, Y., 2013. RNA interference of cadherin gene ex pression in Spodoptera exigua reveals its significance as a specific Bt target. J. Invertebr. Pathol. 114, 285-291 https://doi.org/10.1016/j.jip.2013.09.006
  5. SAS Institute, 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  6. Scott, J.G., Michel, K., Bartholomay, L.C., Siegfired, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y., Douglas, A.E., 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59, 1212-1221. https://doi.org/10.1016/j.jinsphys.2013.08.014
  7. Shih, J.D., Hunter, C.P., 2011. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057-1065. https://doi.org/10.1261/rna.2596511
  8. Surakasi, V.P., Mohamed, A.A.M., Kim, Y. 2011. RNA interference of ${\beta}$1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1537-1544. https://doi.org/10.1016/j.jinsphys.2011.08.006
  9. Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q. Tang, B., Zhuang, W., 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a Non-Midgut gene. PLoS One 4, e6225. https://doi.org/10.1371/journal.pone.0006225
  10. Turner, C.T., Davy, M.W., MacDiarmid, R.M., Plummer, K.M., Birch, N.P., Newcomb, R.D., 2006. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383-391. https://doi.org/10.1111/j.1365-2583.2006.00656.x
  11. van der Flier, A., Sonnenberg, A., 2001. Function and interactions of integrins. Cell Tissue Res. 305, 285-298. https://doi.org/10.1007/s004410100417
  12. Wynant, N., Santos, D., Van Wielendaele, P., Vanden Broeck, J., 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 23, 320-329.
  13. Zhou, X.G., Wheeler, M.M., Oi, F.M., Scharf, M.E., 2008. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larva resistance to permethrin. Insect Biochem. Mol. Biol. 39, 38-46.
  14. Zhu, F., Palli, R., Ferguson, J., Palli, S.R., 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175-182. https://doi.org/10.1002/ps.2048
  15. Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2007a. An integrin-tetraspanin interaction required for cellular innate immune responses of an insect, Manduca sexta. J. Biol Chem. 282, 22563-22572. https://doi.org/10.1074/jbc.M700341200
  16. Ahn, S.J., Badenes-Perez, F.R., Heckel, D.G., 2011. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J. Insect Physiol. 57, 1212-1219. https://doi.org/10.1016/j.jinsphys.2011.05.015
  17. Aroujo, R.N., Santos, A., Pinto, F.S., Gontijo, N.F., Lehane, M.J., Pereira, M.H., 2006. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem. Mol. Biol. 36, 683-693. https://doi.org/10.1016/j.ibmb.2006.05.012
  18. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilangan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nature Biotech. 25, 1322-1326. https://doi.org/10.1038/nbt1359
  19. Bautista, M.A.M., Miyata, T., Miura, K., Tanaka, T., 2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem. Mol. Biol. 39, 38-46. https://doi.org/10.1016/j.ibmb.2008.09.005
  20. Bravo, A., Likitvivatanavong, S, Gill, S., Soberon, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  21. Brower, D.L., 2003. Platelets with wings: the maturation of Drosophila integrin biology. Curr. Opin. Cell Biol. 15, 607-613. https://doi.org/10.1016/S0955-0674(03)00102-9
  22. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., Turner, C., 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487-525. https://doi.org/10.1146/annurev.cb.04.110188.002415
  23. Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberon, M., Gill, S.S., Bravo, A., 2010. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 40, 58-63. https://doi.org/10.1016/j.ibmb.2009.12.010
  24. Fablet, M., 2014. Host control of insect endogenous retroviruses: small RNA silencing and immune response. Viruses 6, 4447-4464 https://doi.org/10.3390/v6114447
  25. Fire, A., 2005. Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Q. Rev. Biophys. 38, 303-309 https://doi.org/10.1017/S0033583505004117
  26. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
  27. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29, 180-183.
  28. Griebler, M., Westerlund, S.A., Hoffmann, K.H., Meyerringe-Vos, M., 2008. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J. Insect Physiol. 54, 997-1007. https://doi.org/10.1016/j.jinsphys.2008.04.019
  29. Hughes, A.L., 2001. Evolution of the integrin ${\alpha}$ and ${\beta}$ protein families. J. Mol. Evol. 52, 63-72. https://doi.org/10.1007/s002390010134
  30. Humphries, M.J., Travis, M.A., Clark, K., Mould, A.P., 2004. Mechanisms of integration of cells and extracellular matrices by integrins. Biochem. Soc. Trans. 32, 822-825. https://doi.org/10.1042/BST0320822
  31. Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
  32. Hynes, R.O., 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687. https://doi.org/10.1016/S0092-8674(02)00971-6
  33. Hynes, R.O., Zhao, Q., 2000. The evolution of cell adhesion. J. Cell Biol. 150, F89-F95. https://doi.org/10.1083/jcb.150.2.F89
  34. Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350. https://doi.org/10.1111/j.1462-5822.2004.00462.x
  35. Kim, E., Park, Y., Kim, Y., 2015a. A transformed bacterium expressing double-stranded RNA specific to integrin ${\beta}$1 enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS One 10, e0132631. https://doi.org/10.1371/journal.pone.0132631
  36. Kim, Y., Lee, J., Kang, S., Han, S., 1998. Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1, 109-113. https://doi.org/10.1016/S1226-8615(08)60012-6
  37. Kim, Y.H., Soumaila Issa, M., Cooper, A.M., Zhu, K.Y., 2015b. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109-117. https://doi.org/10.1016/j.pestbp.2015.01.002
  38. Lavine, M.D., Strand, M.R., 2003. Haemocytes from Pseudoplusia includens express multiple ${\alpha}$ and ${\beta}$ integrin subunits. Insect Mol. Biol. 12, 441-452. https://doi.org/10.1046/j.1365-2583.2003.00428.x
  39. Li, X., Zhang, M., Zhang, H., 2011. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6, e17788. https://doi.org/10.1371/journal.pone.0017788
  40. Loftus, J.C., Smith, J.W., Ginsberg, M.H., 1994. Integrin-mediated cell adhesion: the extracellular face. J. Biol. Chem. 269, 25235-25238.
  41. Macrae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams, P.D., Doudna, J.A., 2006. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195-198. https://doi.org/10.1126/science.1121638
  42. Mamali, I., Lamprou, I., Karagiannis, F., Karakantza, M., Lampropoulou, M., Marmaras, V.J., 2009. A beta integrin subunit regulates bacterial phagocytosis in medfly haemocytes. Dev. Comp. Immunol. 33, 858-866. https://doi.org/10.1016/j.dci.2009.02.004
  43. Mohamed, A.A., Kim, Y., 2011. A target-specific feeding toxicity of ${\beta}$1 integrin dsRNA against diamondback moth, Plutella xylostella. Arch. Insect Biochem. Physiol. 78, 216-230. https://doi.org/10.1002/arch.20455