DOI QR코드

DOI QR Code

SnS-embedded High Performing and Transparent UV Photodetector

SnS 기반의 고성능 투명 UV 광검출기

  • Park, Wang-Hee (Department of Electrical Engineering, Incheon National University) ;
  • Ban, Dong-Kyun (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Hyunki (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Hong-Sik (Department of Electrical Engineering, Incheon National University) ;
  • Patel, Malkeshkumar (Department of Electrical Engineering, Incheon National University) ;
  • Yoo, Jeong Hee (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • 박왕희 (인천대학교 전기공학과 광전에너지소자연구실) ;
  • 반동균 (인천대학교 전기공학과 광전에너지소자연구실) ;
  • 김현기 (인천대학교 전기공학과 광전에너지소자연구실) ;
  • 김홍식 (인천대학교 전기공학과 광전에너지소자연구실) ;
  • ;
  • 유정희 (인천대학교 전기공학과 광전에너지소자연구실) ;
  • 김준동 (인천대학교 전기공학과 광전에너지소자연구실)
  • Received : 2016.04.07
  • Accepted : 2016.05.25
  • Published : 2016.07.01

Abstract

Transparent UV photodetector was achieved by using wide bandgap metal oxide materials. In order to realize transparent heterojunction UV photodetector, n-type ZnO and p-type NiO metal oxide materials were employed. High light-absorbing SnS layer was inserted into the n-ZnO and p-NiO layers. High-performing UV photodetector was realized by ZnO/SnS/NiO/ITO structures to provide extremely fast response times (Fall time: $7{\mu}s$ and rise time: $13{\mu}s$) and high rectifying ratio. The use of functional SnS-embedded photodetector would provide a route for high functional photoelectric devices.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning, National Research Foundation (NRF)

References

  1. F. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, and H. Hosono, Sci. Rep., 5, 10428 (2015). [DOI: http://dx.doi.org/10.1038/srep10428] https://doi.org/10.1038/srep10428
  2. M. Sharon and K. Basavaswara, Sol. Cells, 25, 97 (1988). [DOI: http://dx.doi.org/10.1016/0379-6787(88)90015-4] https://doi.org/10.1016/0379-6787(88)90015-4
  3. M. Ristova and M. Ristov, Sol. Energy Mater. Sol. Cells, 53, 95 (1988). [DOI: http://dx.doi.org/10.1016/S0927-0248(98)00011-7]
  4. M. Ristov, G. Sinadinovski, M. Mitreski, and M. Ristova, Sol. Energy Mater. Sol. Cells, 69, 17 (2001). [DOI: http://dx.doi.org/10.1016/S0927-0248(00)00355-X] https://doi.org/10.1016/S0927-0248(00)00355-X
  5. B. Ghosh, M. Das, P. Banerjee, and S. Das, Sol. Energy Mater. Sol. Cells, 92, 1099 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.03.016] https://doi.org/10.1016/j.solmat.2008.03.016
  6. B. Ghosh, M. Das, P. Banerjee, and S. Das, Semicond. Sci. Technol., 24, 025024 (2009). [DOI: http://dx.doi.org/10.1088/0268-1242/24/2/025024] https://doi.org/10.1088/0268-1242/24/2/025024
  7. H. Kim, H. Kim, M. Patel, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 808 (2015).
  8. T. Hirano, T. Shimizu, K. Yoshida, and M. Sugiyama, 37th IEEE Photovoltaic Specialists Conf. (PVSC) (Seattle, USA, 2011) p. 001280.
  9. M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015). https://doi.org/10.1002/aelm.201500232
  10. Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, and F. Lei, Adv. Energy Mater., 4, 1300611 (2014). https://doi.org/10.1002/aenm.201300611
  11. M. Patel, I. Mukhopadhyay, and A. Ray, Opt. Mater. (Amst), 35, 1693 (2013). [DOI: http://dx.doi.org/10.1016/j.optmat.2013.04.034] https://doi.org/10.1016/j.optmat.2013.04.034
  12. M. Patel and A. Ray, RSC Adv., 4, 39343 (2014). [DOI: http://dx.doi.org/10.1039/C4RA06219A] https://doi.org/10.1039/C4RA06219A