DOI QR코드

DOI QR Code

Development of Ag Nanowire Patterning Process Using Sacrificial Layer

희생층을 이용한 은 나노와이어 패터닝 공정 개발

  • Ha, Bonhee (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • 하본희 (경북대학교 건설환경에너지공학부) ;
  • 조성진 (경북대학교 건설환경에너지공학부)
  • Received : 2016.05.03
  • Accepted : 2016.06.13
  • Published : 2016.07.01

Abstract

We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.

Acknowledgement

Supported by : 한국산업기술진흥협회, 한국연구재단

References

  1. J. A. Jeong, H. K. Kim, and J. Kim, Sol. Energ. Mat. Sol. C., 125, 113 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.003] https://doi.org/10.1016/j.solmat.2014.03.003
  2. Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Muller-Meskamp, and K. Leo, Adv. Funct. Mater., 23, 3763 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201203449] https://doi.org/10.1002/adfm.201203449
  3. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, J. J. Kim, and J. W. Kang, Adv. Energy. Mater., 4, 1300474 (2014). https://doi.org/10.1002/aenm.201300474
  4. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, and Z. Xie, Sol. Energ. Mat. Sol. C., 244, 143 (2016). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.08.039]
  5. A. Catheline, F. Paolucci, G. Valenti, P. Poulin, and A. Penicaud, J. Mater. Res., 30, 2009 (2015). [DOI: http://dx.doi.org/10.1557/jmr.2015.166] https://doi.org/10.1557/jmr.2015.166
  6. M. J. Cha, S. M. Kim, S. J. Kang, J. H. Seo, and B. Walker, RSC Adv., 5, 65646 (2015). [DOI: http://dx.doi.org/10.1039/C5RA10838A] https://doi.org/10.1039/C5RA10838A
  7. S. E. Park, S. Kim, D. Y. Lee, E. Kim, and J. Hwang, J. Mater. Chem. A, 1, 14286 (2013). [DOI: http://dx.doi.org/10.1039/c3ta13204h] https://doi.org/10.1039/c3ta13204h
  8. Y. Ahn, H. Lee, D. Lee, and Y. Lee, ACS Appl. Mater. Interfaces, 6, 18401 (2014). [DOI: http://dx.doi.org/10.1021/am504462f] https://doi.org/10.1021/am504462f
  9. M. S. Kim, D. H. Lee, K. B. Kim, S. H. Jung, J. K. Lee, O. Beom-Hoan, S. G. Lee, and S. G. Park, Thin Solid Films, 587, 100 (2015). [DOI: http://dx.doi.org/10.1016/j.tsf.2015.02.028] https://doi.org/10.1016/j.tsf.2015.02.028
  10. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano. Res., 3, 564 (2010). [DOI: http://dx.doi.org/10.1007/s12274-010-0017-5] https://doi.org/10.1007/s12274-010-0017-5
  11. S. J. Henley, M. Cann, I. Jurewicz, A. Dalton, and D. Milne, Nanoscale, 6, 946 (2014). [DOI: http://dx.doi.org/10.1039/C3NR05504C] https://doi.org/10.1039/C3NR05504C
  12. Z. Tan, W. Shi, C. Guo, Q. Zhang, L. Yang, X. Wu, G. Cheng, and R. Zheng, Nanoscale, 7, 17268 (2015). [DOI: http://dx.doi.org/10.1039/C5NR02876K] https://doi.org/10.1039/C5NR02876K
  13. H. Oh, and M. Lee, Mater. Lett., 176, 110 (2016). [DOI: http://dx.doi.org/10.1016/j.matlet.2016.04.098] https://doi.org/10.1016/j.matlet.2016.04.098
  14. C. Chung, and M. Allen, J. Micromech. Microeng., 15, N1 (2005). [DOI: http://dx.doi.org/10.1088/0960-1317/15/1/021] https://doi.org/10.1088/0960-1317/15/1/N01
  15. D. E. Pesantez, E. K. Amponsah, and A. P. Gadre, Sens Actuators. B Chem., 132, 426 (2008). [DOI: http://dx.doi.org/10.1016/j.snb.2007.10.060] https://doi.org/10.1016/j.snb.2007.10.060
  16. T. Sameshima, K. Yoshioka, and K. Takechi, Jpn. J. Appl. Phys., 44, 6421 (2005). [DOI: http://dx.doi.org/10.1143/JJAP.44.6421] https://doi.org/10.1143/JJAP.44.6421