DOI QR코드

DOI QR Code

Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption

CO2가스를 이용하여 증착된 터널층의 계면포획밀도의 감소와 이를 적용한 저전력비휘발성 메모리 특성

  • Lee, Sojin (Department of Electronic Electrical Computer Engineering, Sungkyunkwan University) ;
  • Jang, Kyungsoo (Department of Electronic Electrical Computer Engineering, Sungkyunkwan University) ;
  • Nguyen, Cam Phu Thi (Department of Electronic Electrical Computer Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (Department of Electronic Electrical Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electronic Electrical Computer Engineering, Sungkyunkwan University)
  • 이소진 (성균관대학교 전자전기컴퓨터공학과) ;
  • 장경수 (성균관대학교 전자전기컴퓨터공학과) ;
  • ;
  • 김태용 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이준신 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2016.04.04
  • Accepted : 2016.06.21
  • Published : 2016.07.01

Abstract

The silicon dioxide ($SiO_2$) was deposited using various gas as oxygen and nitrous oxide ($N_2O$) in nowadays. In order to improve electrical characteristics and the interface state density ($D_{it}$) in low temperature, It was deposited with carbon dioxide ($CO_2$) and silane ($SiH_4$) gas by inductively coupled plasma chemical vapor deposition (ICP-CVD). Each $D_{it}$ of $SiO_2$ using $CO_2$ and $N_2O$ gas was $1.30{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$ and $3.31{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$. It showed $SiO_2$ using $CO_2$ gas was about 2.55 times better than $N_2O$ gas. After 10 years when the thin film was applied to metal/insulator/semiconductor(MIS)-nonvolatile memory(NVM), MIS NVM using $SiO_2$($CO_2$) on tunneling layer had window memory of 2.16 V with 60% retention at bias voltage from +16 V to -19 V. However, MIS NVM applied $SiO_2$($N_2O$) to tunneling layer had 2.48 V with 61% retention at bias voltage from +20 V to -24 V. The results show $SiO_2$ using $CO_2$ decrease the $D_{it}$ and it improves the operating voltage.

Acknowledgement

Supported by : Korea Small and Medium Business Administration

References

  1. A. Chen, Solid State Device Research Conference 2015 45th European (eds. W. Pribyl, T. Grasser and M. Schrems) (IEEE, 2015) p. 109
  2. M. A. Beunder, R. V. Kampen, D. Lacey, M. Renault, and C. G. Smith, Non-Volatile Memory Technology Symposium 2005 (IEEE, 2005) p. 65
  3. C. H. Cheng, F. S. Yeh, and A. Chin, Adv. Mater., 23, 902 (2011). [DOI: http://dx.doi.org/10.1002/adma.201002946] https://doi.org/10.1002/adma.201002946
  4. H. C Card and M. I. Elmasry, Solid-State Electronics, 19, 863 (1976). [DOI: http://dx.doi.org/10.1016/0038-1101(76)90044-7] https://doi.org/10.1016/0038-1101(76)90044-7
  5. Y. C. King, Y. J. King, and C. Hu, IEEE Electron Devices Lett., 20, 409 (1999). [DOI: http://dx.doi.org/10.1109/55.778160] https://doi.org/10.1109/55.778160
  6. H. T. Chen, S. I. Hsieh, C. J. Lin, and Y. C. King, IEEE Electron Devices Lett., 28, 499 (2007). [DOI: http://dx.doi.org/10.1109/LED.2007.896894] https://doi.org/10.1109/LED.2007.896894
  7. J. H. Joo, J. Kor. Inst. Surf. Eng., 41, 279 (2008). [DOI: http://dx.doi.org/10.5695/JKISE.2008.41.6.279] https://doi.org/10.5695/JKISE.2008.41.6.279
  8. D. L. Smith and A. S. Alimonda, J. Electronchem. Soc., 140, 1496 (1993). https://doi.org/10.1149/1.2221586
  9. K. Radouane, L. Date, M. Yousfi, B. Despax, and H. Caquineau, J. Phys. D: Appl. Phys., 33, 1332 (2000). [DOI: http://dx.doi.org/10.1088/0022-3727/33/11/312] https://doi.org/10.1088/0022-3727/33/11/312
  10. M. I. Alayo, I. Pereyra, W. L. Scopel, and M.C.A. Fantini, Thin Solid Films, 402, 154 (2002). [DOI: http://dx.doi.org/10.1016/S0040-6090(01)01685-6] https://doi.org/10.1016/S0040-6090(01)01685-6
  11. G. Lucovsky, Z. Jing, and D. R. Lee, J. Vac. Sci. Technol. B, 14, 2832 (1996). [DOI: http://dx.doi.org/10.1116/1.588841] https://doi.org/10.1116/1.588841
  12. B. Holm, T. Ahuja, A. Belonoshko, and B. Johansson, Phys. Rev. Lett., 85, 1259 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1258]
  13. M. T. Lee, C. H. Liu, and K. Y. Fu, http://www.google.com/patent/US6268269#backward-citations (1999).
  14. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley and Sons, New York, 1982)
  15. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415 (1984). [DOI: http://dx.doi.org/10.1063/1.94794] https://doi.org/10.1063/1.94794
  16. K. F. Albertin and I. Pereyra, Microelectronic Engineering, 77, 144 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.10.002] https://doi.org/10.1016/j.mee.2004.10.002
  17. C. Y. Kim, S. H. Kim, R. Navamathavan, C. K. Choi, and W. Y. Jeung, Thin Solid Film, 516, 340 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.06.097] https://doi.org/10.1016/j.tsf.2007.06.097
  18. M. Suzuki, T. Yamaguchi, N. Fukushima, and M. Koyama, J. Appl. Phys., 103, 034118 (2008). [DOI: http://dx.doi.org/10.1063/1.2838470] https://doi.org/10.1063/1.2838470