Prediction and Analysis of Breast Cancer Related Deleterious Non-Synonymous Single Nucleotide Polymorphisms in the PTEN Gene

  • Published : 2016.06.01


One of the most common cancer types faced by the women around the world is breast cancer. Among the several low, moderate and high penetrance genes conferring susceptibility to breast cancer, PTEN is one which is known to be mutated in many tumor types. In this study, we predicted and analyzed the impact of three deleterious coding non-synonymous single nucleotide polymorphisms rs121909218 (G129E), rs121909229 (R130Q) and rs57374291 (D107N) in the PTEN gene on the phenotype of breast tumors using computational tools SIFT, Polyphen-2, PROVEAN, MUPro, POPMusic and the GETAREA server.


Supported by : UGC


  1. Adamczyk A, Niemiec J, Janecka A, et al (2015). Prognostic value of PIK3CA mutation status, PTEN and androgen receptor expression for metastasis-free survival in HER2-positive breast cancer patients treated with trastuzumab in adjuvant setting. Pol J Pathol, 66, 133-41.
  2. Adzhubei IA, Schmidt S, Peshkin L, et al (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7, 248-9.
  3. Black JL, Harrell JC, Leisner TM, et al (2015). CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat, 152, 337-46.
  4. Cariaso M, Lennon G (2012). SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res, 40, 1308-12.
  5. Caserta E, Egriboz O, Wang H, et al (2015). Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo. Genes Dev, 29, 1707-20.
  6. Cheng J, Randall A, Baldi P (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62, 1125-32.
  7. Choi Y, Sims GE, Murphy S, et al (2012). Predicting the functional effect of amino acid substitutions and indels. PLoS One, 7, 46688.
  8. DeGraffenried LA, Fulcher L, Friedrichs WE, et al (2004). Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol, 15, 1510-6.
  9. Dehouck Y, Grosfils A, Folch B, et al (2009). Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics, 25, 2537-43.
  10. DeSantis C, Ma J, Bryan L, et al (2014). Breast cancer statistics, 2013. CA Cancer J Clin, 64, 52-62.
  11. Fraczkiewicz R, Braun W (1998). Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules. J Comp Chem, 19, 319-33.<319::AID-JCC6>3.0.CO;2-W
  12. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, et al (2011). PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther, 10, 1093-101.
  13. Haiman CA, Stram DO, Cheng I, et al (2006). Common genetic variation at PTEN and risk of sporadic breast and prostate cancer. Cancer Epidemiol Biomarkers Prev, 15, 1021-5.
  14. Heikkinen T, Greco D, Pelttari LM, et al (2011). Variants on the promoter region of PTEN affect breast cancer progression and patient survival. Breast Cancer Res, 13, 130.
  15. International HapMap C, Altshuler DM, Gibbs RA, et al (2010). Integrating common and rare genetic variation in diverse human populations. Nature, 467, 52-8.
  16. Kechagioglou P, Papi RM, Provatopoulou X, et al (2014). Tumor suppressor PTEN in breast cancer: heterozygosity, mutations and protein expression. Anticancer Res, 34, 1387-400.
  17. Kumar P, Henikoff S, Ng PC (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 4, 1073-81.
  18. Kwan ML, Kushi LH, Weltzien E, et al (2009). Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res, 11, 31.
  19. Lee JO, Yang H, Georgescu MM, et al (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323-34.
  20. Lindahl E, Azuara C, Koehl P, et al (2006). NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res, 34, 52-6.
  21. Maggi LB, Jr., Weber JD (2015). Targeting PTEN-defined breast cancers with a one-two punch. Breast Cancer Res, 17, 51.
  22. Martin AM, Weber BL (2000). Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst, 92, 1126-35.
  23. Ng PC, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31, 3812-4.
  24. Ng PC, Henikoff S (2006). Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet, 7, 61-80.
  25. Saika K, Sobue T (2013). [Cancer statistics in the world]. Gan To Kagaku Ryoho, 40, 2475-80.
  26. Schaefer C, Meier A, Rost B, et al (2012). SNPdbe: constructing an nsSNP functional impacts database. Bioinformatics, 28, 601-2.
  27. Sherry ST, Ward MH, Kholodov M, et al (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29, 308-11.
  28. Sood A, Ghosh AK (2006). Literature search using PubMed: an essential tool for practicing evidence- based medicine. J Assoc Physicians India, 54, 303-8.