DOI QR코드

DOI QR Code

Scabraside D Derived from Sea Cucumber Induces Apoptosis and Inhibits Metastasis via iNOS and STAT-3 Expression in Human Cholangiocarcinoma Xenografts

  • Assawasuparerk, Kanjana (Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University) ;
  • Rawangchue, Thanakorn (Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University) ;
  • Phonarknguen, Rassameepen (The Monitoring and Surveillance Center for Zoonotic Disease in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University)
  • Published : 2016.06.01

Abstract

Scabraside D, a sulfated triterpene glycoside, was extracted from the sea cucumber Holothuria scabra. It shows anti-proliferation in many of cancer cell lines, but the function and mechanisms of action of scabraside D in human cholangiocarcinoma (HuCCA) have not previously determined. In this study, we investigated the activity of scabraside D on HuCCA cell apoptosis, lymphangiogenesis and metastasis in a nude mouse model. Scabraside D induced signs of apoptosis, such as cell shrinkage, nuclear condensation, nuclear fragmentation and DNA fragmentation on TUNEL assays, while effectively decreasing expression of BCl-2 but increasing caspase-3 gene level expression. Immunohistochemistry revealed that scabraside D significantly reduced lymphatic vessel density (LVD). Moreover, scabraside D treatment significantly decreased VEGF-C, MMP-9 and uPA gene expression, which play important roles in the lymphangiogenesis and invasion of cancer cells in metastasis processes. Quantitative real-time PCR showed that scabraside D significantly decreased iNOS and STAT-3 gene expression. This study demonstrated that scabraside D plays a role in activation of HuCCA tumor apoptosis and inhibition of lymphangiogenesis, invasion and metastasis through decreasing BCl-2, MMP-9, uPA and VEGF-C and increasing caspase-3 expression by suppression of iNOS and STAT-3 expression. Therefore, scabraside D could be a promising candidate for cholangiocarcinoma treatment.

Keywords

Scabraside D;sea cucumber;cholangiocarcinoma;apoptosis;metastasis;iNOS;STAT-3

References

  1. Aggarwal BB, Sethi G, Ahn KS, et al (2006). Targeting signaltransducer- and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci, 1091, 151-69. https://doi.org/10.1196/annals.1378.063
  2. Akira S, Nishio Y, Inoue M, et al (1994). Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp 130-mediated signaling pathway. Cell, 77, 63-71. https://doi.org/10.1016/0092-8674(94)90235-6
  3. Antonina H (2005). Progression molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res, 25, 3327-34.
  4. Attoub S, Arafat K, G?laude A, et al (2013). Frondoside A suppressive effects on lung cancer suuvival, tumor growth, angiogenesis, invasion and metastasis. Plos One, 8, 1-10.
  5. Azad N, Iyer AK, Wang L, et al (2010). Nitric oxide-mediated bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells. Am J Respir Cell Mol Biol, 42, 578-85. https://doi.org/10.1165/rcmb.2009-0094OC
  6. Bahrami Y, Zhang W, Chataway T, et al (2014). Structural elucidation of novel saponins in the sea cucumber Holothuria lessoni. Mar Drugs, 12, 4439-73. https://doi.org/10.3390/md12084439
  7. Carpenter RL, Lo HW (2014). STAT-3 target genes relevant to human cancers. Cancers, 6, 897-925. https://doi.org/10.3390/cancers6020897
  8. Caulier G, Dyck SV, Gerbaux P, et al (2011). Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-de-mer Inf Bull, 31, 48-54.
  9. Chludil HD, Muniain CC, Seldes AM, et al (2002). Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J Nat Prod, 65, 860-65. https://doi.org/10.1021/np0106236
  10. Choi HJ, Han JS (2012). Overexpression of phospholipase D enhances Bcl-2 expression by activating STAT-3 through independent activation of ERK and p38MAPK in HeLA cells. Biochim Biophys Acta, 1823, 1082-91. https://doi.org/10.1016/j.bbamcr.2012.03.015
  11. Dano k, Behrendt N, Hoyer-Hansen G, et al (2005). Plasminogen activation and cancer. Thromb Haemost, 93, 676-81.
  12. Dass K, Ahmad A, Azmi AS, et al (2007). Evolving role of uPA/uPAR system in human cancers. CancerTreat Rev, 34, 122-36.
  13. Dineen SP, Sullivan LA, Beck Aw, et al (2008). The adnectin CT-322 is novel VEGF receptor 2 inhibitor that decrease tumor burden in an orthotopic mouse model of pancreatic cancer. BMC Cancer, 8, 1-10. https://doi.org/10.1186/1471-2407-8-1
  14. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell. Biol, 119, 493-501. https://doi.org/10.1083/jcb.119.3.493
  15. Gores GJ (2003). Cholangiocarcinoma: current concepts and insights. Hepatol, 37, 961-69. https://doi.org/10.1053/jhep.2003.50200
  16. Gritsko T, Williams A, Turkson J, et al (2006). Persistent activation of STAT-3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res, 12, 11-19. https://doi.org/10.1158/1078-0432.CCR-04-1752
  17. Han H, Li L, Yi YH, et al (2012). Triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity. Chin Herb Med, 4, 183-88.
  18. Harold FD (2002). Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and potential target for diagnosis and therapy. J Clin Oncol, 20, 4368-80. https://doi.org/10.1200/JCO.2002.10.088
  19. Haswell-Elkins MR, Mairiang E, Mairiang P, et al (1994). Cross-sectional study of Opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. Int J Cancer, 59, 505-9. https://doi.org/10.1002/ijc.2910590412
  20. Hoeben A, Landuyt B, Highley M, et al (2004). Vascular endothelial growth factor and angiogenesis. Pharmacol Rev, 56, 549-80. https://doi.org/10.1124/pr.56.4.3
  21. Janakiram NB, Rao CV (2012). Inos-selective inhibitors for cancer prevention: promise and progress. Future Med Chem, 4, 2193-204. https://doi.org/10.4155/fmc.12.168
  22. Karadayi N, Kandemir NO, Yavuzer D, et al (2013) Inducible nitric oxide synthase expression in gastric adenocarcinoma: impact on lymphangiogenesis and lymphatic metastasis. Diagn Pathol, 8, 1-12. https://doi.org/10.1186/1746-1596-8-1
  23. Kerr RG, Chen Z (1995). In vivo and in vitro biosynthesis of saponins in sea cucumbers. J Nat Prod, 58, 172-76. https://doi.org/10.1021/np50116a002
  24. Kitagawa I, Kobayashi M, Hori M, et al (1989). Marine natural products. XVIII. Four lanostane-type triterpene oligoglycosides, bivittosides A, B, C, and D, from the okinawan sea cucumber bohadschia bivittata mitsukuri. Chem Pharma Bull, 37, 61-7. https://doi.org/10.1248/cpb.37.61
  25. Kloz T, Bloch W, Volberge C, et al (1998). Selective expression of inucible nitric oxide synthase in human prostate carcinoma. Cancer (phila), 82, 1897-903. https://doi.org/10.1002/(SICI)1097-0142(19980515)82:10<1897::AID-CNCR12>3.0.CO;2-O
  26. Kojima M, Morisaki T, Tsukahara Y, et al (1999). Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J Surg Oncol, 70, 222-29. https://doi.org/10.1002/(SICI)1096-9098(199904)70:4<222::AID-JSO5>3.0.CO;2-G
  27. Lechner M, Lirk P, Rieder J (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol, 15, 227-89.
  28. Li H, Huang D, Gao Z, et al (2013). Scutellarin inhibits the growth and invasion of human tongue squamous carcinoma through the inhibition of matrix metalloproteinase-2 and -9 and ${\alpha}v{\beta}6$ integrin. Int J Oncol, 42, 1674-81. https://doi.org/10.3892/ijo.2013.1873
  29. McCawley L, Matrisian L (2000). Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today, 6, 149-56. https://doi.org/10.1016/S1357-4310(00)01686-5
  30. Nabeshima K, Inoue T, Shimao Y, et al (2002). Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 52, 255-64. https://doi.org/10.1046/j.1440-1827.2002.01343.x
  31. Niu G, wright KL, Huang M, et al (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000-08. https://doi.org/10.1038/sj.onc.1205260
  32. Pasco S, Brassart B, Ramont L, et al (2005). Control of melanoma cell invasion by type IV collagen. Cancer Detect Prev, 29, 260-66. https://doi.org/10.1016/j.cdp.2004.09.003
  33. Plengsuriyakarn T, Viyanant V, Eursitthichai V, et al (2012). Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models. BMC Complement Altern Med, 12, 1-19.
  34. Prakobwong S, Gupta SC, Kim JH, et al (2011). Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogen, 32, 1372-80. https://doi.org/10.1093/carcin/bgr032
  35. Sanceau J, Truchet S, Bauvois B (2003). Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing’s sarcoma cells. J Biol Chem, 278, 36537-46. https://doi.org/10.1074/jbc.M304300200
  36. Song Z-J, Gong P, Wu G-Y (2002). Relationship between the expression of iNOS, VEGF, tumor angiogenesis and gastric cancer. World J Gastroenterol, 8, 591-95. https://doi.org/10.3748/wjg.v8.i4.591
  37. Stonix VA, Kalinin VI, Avilov SA (1999). Toxin from sea cucumbers (Holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins, 8, 235-48.
  38. Storr SJ, Safuan S, Mitra A, et al (2012). Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol, 25, 493-504. https://doi.org/10.1038/modpathol.2011.182
  39. Straume O, Jackson DG, Akslen LA (2003). Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clin Cancer Res, 9, 250-56.
  40. Swana HS, Smith SD, Perrotta PL, et al (1999). Inducible nitric oxide synthase with transitional cell carcinoma of the bladder. J Urol, 161, 630-34. https://doi.org/10.1016/S0022-5347(01)61985-2
  41. Thomsen LL, Lawton FG, Knowles RG, et al (1994). Nitric oxide synthase activity in human gynecological cancer. Cancer Res, 54, 1352-54.
  42. Thummarati P, Wijitburaphat S, Prasopthum A, et al (2012). High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J Gastoenterol, 18, 244-50. https://doi.org/10.3748/wjg.v18.i3.244
  43. Tian F, Zhang X, Tong Y, et al (2005). PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther, 4, 874-82. https://doi.org/10.4161/cbt.4.8.1917
  44. Tong Y, Zhang X, Tian F, et al, (2005). Philinopside A, a novel marine-derived compound possessing dual anti-angiogenenic and anti-tumor effects. Int J Cancer. 114, 843-53. https://doi.org/10.1002/ijc.20804
  45. Vakkala M, Kahlos K, Lakari E, et al (2000). Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res, 6, 2408-16.
  46. Westermarck J, Kahari V (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 31, 781-92.
  47. Xu W, Liu LZ, Loizdou M, et al (2002). The role of nitric oxide in cancer. Cell Res, 12, 311-20. https://doi.org/10.1038/sj.cr.7290133
  48. Xue Y, Chen F, Zhang D, et al (2009). Tumor-derived VEGF modulates hematopoiesis. J Angiogenes Res, 1, 1-9. https://doi.org/10.1186/2040-2384-1-1
  49. Yan L, Li L, Li Q, et al (2015). Expression of signal transducer and activator of transcription 3 and its phosphorylated form is significantly upregulated in patients with papillary thyroid cancer. Exp Ther Med, 9, 2195-201. https://doi.org/10.3892/etm.2015.2409
  50. Ye J, Coulouris G, Zaretskaya I, et al (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134. https://doi.org/10.1186/1471-2105-13-134
  51. Yu H, Zhang S, Zhang R, et al (2009). The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage invasive cervical carcinoma. J Exp Clin Canc Res, 28, 1-6. https://doi.org/10.1186/1756-9966-28-1

Cited by

  1. (Thunb) DC. as a Promising Candidate for Cholangiocarcinoma Chemotherapeutics vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/5929234