DOI QR코드

DOI QR Code

Screening for Lynch Syndrome in Young Colorectal Cancer Patients from Saudi Arabia Using Microsatellite Instability as the Initial Test

  • Alqahtani, Masood (School of Surgery, University of Western Australia) ;
  • Grieu, Fabienne (Department of Anatomical Pathology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre) ;
  • Carrello, Amerigo (Department of Anatomical Pathology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre) ;
  • Amanuel, Benhur (Department of Anatomical Pathology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre) ;
  • Mashour, Miral (Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam) ;
  • Alattas, Rabab (Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam) ;
  • Al-Saleh, Khalid (College of Medicine, Anatomical Pathology, Adult Oncology, King Khaled University Hospital King Saud University) ;
  • Alsheikh, Abdulmalik (College of Medicine, Anatomical Pathology, Adult Oncology, King Khaled University Hospital King Saud University) ;
  • Alqahtani, Sarah (Primary Health Care Department of Eastern Province, Ministry of Health) ;
  • Iacopetta, Barry (School of Surgery, University of Western Australia)
  • Published : 2016.06.01

Abstract

Background: Lynch Syndrome (LS) is a familial cancer condition caused by germline mutations in DNA mismatch repair genes. Individuals with LS have a greatly increased risk of developing colorectal cancer (CRC) and it is therefore important to identify mutation carriers so they can undergo regular surveillance. Tumor DNA from LS patients characteristically shows microsatellite instability (MSI). Our aim here was to screen young CRC patients for MSI as a first step in the identification of unrecognized cases of LS in the Saudi population. Materials and Methods: Archival tumor tissue was obtained from 284 CRC patients treated at 4 institutes in Dammam and Riyadh between 2006 and 2015 and aged less than 60 years at diagnosis. MSI screening was performed using the BAT-26 microsatellite marker and positive cases confirmed using the pentaplex MSI analysis system. Positive cases were screened for BRAF mutations to exclude sporadic CRC and were evaluated for loss of expression of 4 DNA mismatch repair proteins using immunohistochemistry. Results: MSI was found in 33/284 (11.6%) cases, of which only one showed a BRAF mutation. Saudi MSI cases showed similar instability in the BAT-26 and BAT-25 markers to Australian MSI cases, but significantly lower frequencies of instability in 3 other microsatellite markers. Conclusions: MSI screening of young Saudi CRC patients reveals that approximately 1 in 9 are candidates for LS. Patients with MSI are strongly recommended to undergo genetic counselling and germline mutation testing for LS. Other affected family members can then be identified and offered regular surveillance for early detection of LS-associated cancers.

Keywords

Colorectal cancer;microsatellite instability;Lynch syndrome;screening;Saudi Arabia

References

  1. Aljebreen AM (2007). Clinico-pathological patterns of colorectal cancer in Saudi Arabia: younger with an advanced stage presentation. Saudi J Gastroenterol, 13, 84-87. https://doi.org/10.4103/1319-3767.32183
  2. Al-Madouj A, Hayder M, Al-Zahrani W, et al (2011). Cancer incidence report saudi arabia. Saudi Cancer Registry 2011. http://www.chs.gov.sa/Ar/HealthRecords/CancerRegistry/ Pages/CancerRegistryRecords.aspx
  3. Amin TT, Suleman W, Al Taissan AA, et al (2012). Patients’ profile, clinical presentations and histopathological features of colo-rectal cancer in Al Hassa region, Saudi Arabia. Asian Pac J Cancer Prev, 13, 211-6. https://doi.org/10.7314/APJCP.2012.13.1.211
  4. Beg S, Siraj AK, Prabhakaran S, et al (2015). Molecular markers and pathway analysis of colorectal carcinoma in the Middle East. Cancer. 121, 3799-808. https://doi.org/10.1002/cncr.29580
  5. Domingo E, Laiho P, Ollikainen M, et al (2004). BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet, 41, 664-8. https://doi.org/10.1136/jmg.2004.020651
  6. el-Hazmi MA, al-Swailem AR, Warsy AS, et al (1995). Consanguinity among the Saudi Arabian population. J Med Genet, 32, 623-26. https://doi.org/10.1136/jmg.32.8.623
  7. Elsamany SA, Alzahrani AS, Mohamed MM, et al (2014). Clinico-pathological patterns and survival outcome of colorectal cancer in young patients: western Saudi Arabia experience. Asian Pac J Cancer Prev, 15, 5239-43. https://doi.org/10.7314/APJCP.2014.15.13.5239
  8. Iacopetta B, Grieu F (2000). Routine detection of the replication error phenotype in clinical tumor specimens using fluorescence-SSCP. Biotechniques, 28, 566-70.
  9. Iacopetta B, Grieu F, Amanuel B (2010). Microsatellite instability in colorectal cancer. Asia Pac J Clin Oncol, 6, 260-9. https://doi.org/10.1111/j.1743-7563.2010.01335.x
  10. Ibrahim EM, Zeeneldin AA, El-Khodary TR, et al (2008). Past, present and future of colorectal cancer in the Kingdom of Saudi Arabia. Saudi J Gastroenterol, 14, 178-82. https://doi.org/10.4103/1319-3767.43275
  11. Jarvinen HJ, Aarnio M, Mustonen H, et al (2000). Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterol, 118, 829-34. https://doi.org/10.1016/S0016-5085(00)70168-5
  12. Li WQ, Kawakami K, Ruszkiewicz A, et al (2006). BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol Cancer, 5, 2. https://doi.org/10.1186/1476-4598-5-2
  13. Lynch HT, de la Chapelle A (2003). Hereditary colorectal cancer. N Engl J Med, 348, 919-32. https://doi.org/10.1056/NEJMra012242
  14. Lynch HT, Riley BD, Weissman SM, et al (2004). Hereditary nonpolyposis colorectal carcinoma (HNPCC) and HNPCClike families: Problems in diagnosis, surveillance, and management. Cancer, 100, 53-64. https://doi.org/10.1002/cncr.11912
  15. Marcus VA, Madlensky L, Gryfe R, et al (1999). Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol, 23, 1248-55. https://doi.org/10.1097/00000478-199910000-00010
  16. Mosli MH, Al-Ahwal MS (2012). Colorectal cancer in the Kingdom of Saudi Arabia: need for screening. Asian Pac J Cancer Prev, 13, 3809-13. https://doi.org/10.7314/APJCP.2012.13.8.3809
  17. Nemati A, Rahmatabadi ZK, Fatemi A, Emami MH (2011). Hereditary non-polyposis colorectal cancer and familial colorectal cancer in central part of Iran, Isfahan. J Res Med Scien, 17, 67-73.
  18. Pinol V, Castells A, Andreu M, et al (2005). Gastrointestinal oncology group of the spanish gastroenterological association. accuracy of revised bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA, 293, 1986-94. https://doi.org/10.1001/jama.293.16.1986
  19. Richter A, Grieu F, Carrello A, et al (2013). A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma. Sci Rep, 3, 1659. https://doi.org/10.1038/srep01659
  20. Samowitz WS, Curtin K, Lin HH, et al (2001). The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterol, 121, 830-8. https://doi.org/10.1053/gast.2001.27996
  21. Schofield L, Watson N, Grieu F, et al (2009). Population-based detection of Lynch syndrome in young colorectal cancer patients using microsatellite instability as the initial test. Int J Cancer, 124, 1097-102. https://doi.org/10.1002/ijc.23863
  22. Schofield L, Grieu F, Amanuel B, et al (2014). Population-based screening for Lynch syndrome in Western Australia. Int J Cancer, 135, 1085-91. https://doi.org/10.1002/ijc.28744
  23. Siraj AK, Bu R, Prabhakaran S, et al (2014). A very low incidence of BRAF mutations in Middle Eastern colorectal carcinoma. Mol Cancer, 13, 168. https://doi.org/10.1186/1476-4598-13-168
  24. Siraj AK, Prabhakaran S, Bavi P, et al (2015). Prevalence of Lynch syndrome in a Middle Eastern population with colorectal cancer. Cancer, 121, 1762-71. https://doi.org/10.1002/cncr.29288
  25. Snowsill T, Huxley N, Hoyle M, et al (2015). A model-based assessment of the cost-utility of strategies to identify Lynch syndrome in early-onset colorectal cancer patients. BMC Cancer, 15, 313. https://doi.org/10.1186/s12885-015-1254-5
  26. Suraweera N, Duval A, Reperant M, et al (2002). Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterolo, 123, 1804-11. https://doi.org/10.1053/gast.2002.37070
  27. Terdiman JP (2005). It is time to get serious about diagnosing Lynch syndrome (hereditary nonpolyposis colorectal cancer with defective DNA mismatch repair) in the general population. Gastroenterol, 129, 741-4. https://doi.org/10.1016/j.gastro.2005.06.033
  28. Umar A, Boland CR, Terdiman JP, et al (2004). Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst, 96, 261-8. https://doi.org/10.1093/jnci/djh034
  29. Ward RL, Hicks S, Hawkins NJ (2013). Population-based molecular screening for Lynch syndrome: implications for personalized medicine. J Clin Oncol, 31, 2554-2562. https://doi.org/10.1200/JCO.2012.46.8454
  30. Xicola RM, Llor X, Pons E, et al (2007). Gastrointestinal oncology group of the spanish gastroenterological association. performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst, 99, 244-52. https://doi.org/10.1093/jnci/djk033
  31. Zeinalian M, Hashemzadeh-Chaleshtori M, Akbarpour MJ, et al (2015). Epidemioclinical feature of early-onset colorectal cancer at-risk for Lynch syndrome in central Iran. Asian Pac J Cancer Prev, 16, 4647-52. https://doi.org/10.7314/APJCP.2015.16.11.4647

Cited by

  1. A new hereditary colorectal cancer network in the Middle East and eastern mediterranean countries to improve care for high-risk families pp.1573-7292, 2017, https://doi.org/10.1007/s10689-017-0018-6
  2. Screening for Lynch syndrome in young Saudi colorectal cancer patients using microsatellite instability testing and next generation sequencing pp.1573-7292, 2017, https://doi.org/10.1007/s10689-017-0015-9
  3. Molecular characteristics of colorectal cancer in a Middle Eastern population in a single institution vol.38, pp.4, 2018, https://doi.org/10.5144/0256-4947.2018.251