DOI QR코드

DOI QR Code

Recent Progress in Triple Negative Breast Cancer Research

  • Mouh, Fatima Zahra (Equipe deRecherche ONCOGYMA, University of Mohamed V,, Faculty of Medicine and Pharmacy of Rabat) ;
  • El Mzibri, Mohammed (Unite de Recherche Medicale et Biologique. Centre National de l'Energie, des Sciences et des Techniques Nucleaires) ;
  • Slaoui, Meriem (Equipe deRecherche ONCOGYMA, University of Mohamed V,, Faculty of Medicine and Pharmacy of Rabat) ;
  • Amrani, Mariam (Equipe deRecherche ONCOGYMA, University of Mohamed V,, Faculty of Medicine and Pharmacy of Rabat)
  • Published : 2016.06.01

Abstract

Triple-negative breast cancer (TNBC) is defined as a type of breast carcinoma that is negative for expression of oestrogene and progesterone hormone receptors (ER, PR) and HER2. This form of breast cancer is marked by its aggressiveness, low survival rate and lack of specific therapies. Recently, important molecular characteristics of TNBC have been highlighted and led to the identification of some biomarkers that could be used in diagnosis, as therapeutic targets or to assess the prognosis. In this review, we summarize recent progress in TNBC research focusing on the genetic and epigenetic alterations of TNBC and the potential use of these biomarkers in the targeted therapy for better management of TNBC.

Keywords

Triple-negative breast cancer (TNBC);biomarkers;targeted therapy

References

  1. Aboulkassima T, Yasmeena A, Akil N, et al (2015). Incidence of Epstein-Barr virus in Syrian women with breast cancer: A tissue microarray study. Human Vaccines Immunotherapeutics, 11, 951-5. https://doi.org/10.1080/21645515.2015.1009342
  2. Ahn SG, Dong SM, Oshima A, et al (2013). LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients. Breast Cancer Res Treat.
  3. Ahuja R, Jamal A, Nosrati N, et al (2014). Human oncogenic viruses and cancer. Cancer, Current Science, 107, 768-785.
  4. Alibek K, Kakpenova A, Baiken Y (2013). Role of infectious agents in the carcinogenesis of brain and head and neck cancers. Infectious Agents Cancer, 8, 32. https://doi.org/10.1186/1750-9378-8-32
  5. Alikanoglu AS, Yildirim M, Suren D, et al ( 2014). Expression of cyclooxygenase-2 and Bcl-2 in breast cancer and their relationship with triple-negative disease. J Buon, 19, 430-4.
  6. Alluri P, Newman LA (2014). Basal-like and triple-negative breast cancers searching for positives among many negatives. surg oncol clin n am, 23, 567-77 https://doi.org/10.1016/j.soc.2014.03.003
  7. Andreeva AVand Kutuzov MA (2010). Cadherin 13 in cancer. Genes Chromosomes Cancer, 49, 775-90.
  8. Ansieau S, Bastid J, Doreau A, et al (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79-89. https://doi.org/10.1016/j.ccr.2008.06.005
  9. Arai T, Miyoshi Y, Kim SJ, et al (2006). Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers. Breast Cancer Res Treat, 100, 169-76. https://doi.org/10.1007/s10549-006-9241-9
  10. Asirvatham AJ, Schmidt M, Gao B, et al (2006). Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinol, 147, 257-71. https://doi.org/10.1210/en.2005-0942
  11. Bae YK, Shim YR, Choi JH, et al (2005). Gene promoter hypermethylation in tumors and plasma of breast cancer patients. Cancer Res Treat, 37, 233-40. https://doi.org/10.4143/crt.2005.37.4.233
  12. Bartel D P (2009). MicroRNA Target Recognition and Regulatory Functions. Cell, 136, 215-33. https://doi.org/10.1016/j.cell.2009.01.002
  13. Bauer KR, Brown M, Cress RD, et al (2007). Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the socalled triple-negative phenotype: a population-based study from the california cancer registry. Cancer, 109, 1721-8 https://doi.org/10.1002/cncr.22618
  14. Ben Gacem R, Hachana M, Ziadi S, et al (2012). Contribution of epigenetic alteration of BRCA1 and BRCA2 genes in breast carcinomas in Tunisian patients. Cancer Epidemiol, 36, 190-197. https://doi.org/10.1016/j.canep.2011.09.001
  15. Bentz BG, Haines III GK, Radosevich JA (2000). Glutathione S-transferase pi in squamous cell carcinoma of the head and neck. laryngoscope, 110, 1642-7. https://doi.org/10.1097/00005537-200010000-00013
  16. Bofill-Mas S, Girones R (2001). Excretion and transmission of JCV in human populations. J Neurovirol ,7, 345-349 https://doi.org/10.1080/13550280152537210
  17. Bosch FX, Broker TR, Forman D, et al (2013). Comprehensive control of human papillomavirus infections and related diseases. Vaccine, 31, 1-31. https://doi.org/10.1016/j.vaccine.2013.10.003
  18. Brooks JD, Weinstein M, Lin X, et al (1998). CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev, 7, 531-6.
  19. Brtko J (2007). Role of retinoids and their cognate nuclear receptors in breast cancer chemoprevention. Cent European J Public Health, 15, 3-6.
  20. Buckland G, Travier N, Cottet V, et al (2013). Adherence to the Mediterranean diet and risk of breast cancer in the European prospective investigation into cancer and nutrition cohort study. Int J Cancer, 132, 2918-27. https://doi.org/10.1002/ijc.27958
  21. Cairns P, Esteller M, Herman JG, et al (2001). Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res, 7, 2727-30.
  22. Carey LA (2011). Directed therapy of subtypes of triple-negative breast cancer. Oncologist, 16, 71-78.
  23. Carey LA, Perou CM, Livasy CA, et al (2006). Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA, 295, 2492-502. https://doi.org/10.1001/jama.295.21.2492
  24. Castello A, M Pollan, Buijsse B, et al (2014). Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case-control EpiGEICAM study. British J Cancer, 111, 1454-62. https://doi.org/10.1038/bjc.2014.434
  25. Comen E, Davids M, Kirchhoff T, et al (2011). Relative contributions of BRCA1 and BRCA2 mutations to “triplenegative” breast cancer in Ashkenazi Women. Breast Cancer Res Treat, 129, 185-190. https://doi.org/10.1007/s10549-011-1433-2
  26. Corbex M, Bouzbid S, Traverse-Glehen A (2014). Prevalence of papillomaviruses, polyomaviruses, and herpesviruses in triple-negative and inflammatory breast tumors from Algeria compared with other types of breast cancer tumors. Plos one, 9, e114559. https://doi.org/10.1371/journal.pone.0114559
  27. Dawood S, (2010). Triple-negative breast cancer epidemiology and management options. Drugs, 70, 2247-58. https://doi.org/10.2165/11538150-000000000-00000
  28. De Candia P, Akram M, Benezra R, et al (2006). Id4 messenger RNA and estrogen receptor expression: inverse correlation in human normal breast epithelium and carcinoma. Human Pathol, 37, 1032-41. https://doi.org/10.1016/j.humpath.2006.03.004
  29. Del Valle L, Gordon J, Enam S, et al (2002) Expression of human neurotropic polyomavirus JCV late gene product agnoprotein in human medulloblastoma. J Natl Cancer Inst, 94, 267-73 https://doi.org/10.1093/jnci/94.4.267
  30. Demokan S, Chuang A, Suoglu Y, et al (2012). Promoter methylation and loss of p16 (INK4a) gene expression in head and neck cancer. Head Neck, 34, 1470-5. https://doi.org/10.1002/hed.21949
  31. Dennison J B, Molina J R, Mitra S, et al (2013). Lactate dehydrogenase b: a metabolic marker of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res, 19, 3703-13. https://doi.org/10.1158/1078-0432.CCR-13-0623
  32. Dent R, Trudeau M, Pritchard KI, et al (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res, 13, 4429-34. https://doi.org/10.1158/1078-0432.CCR-06-3045
  33. Dong T, Kang X, Liu Z, et al (2015). Altered glycometabolism affects both clinical features and prognosis of triple-negative and neoadjuvant chemotherapy-treated breast cancer. Tumour Biol.
  34. Dulaimi E, Ibanez de Caceres I, Uzzo RG, et al (2004). Promoter hypermethylation profile of kidney cancer. Clin Cancer Res, 10, 3972-9. https://doi.org/10.1158/1078-0432.CCR-04-0175
  35. Ellmann L, Joshi MB, Resink TJ, et al (2012). BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells. Lab Invest, 92, 1788-800. https://doi.org/10.1038/labinvest.2012.140
  36. Feinberg AP (2004). The epigenetics of cancer etiology. Seminars Cancer Biol, 14, 427-432. https://doi.org/10.1016/j.semcancer.2004.06.005
  37. Feng W, Shen L, Wen S, et al (2007). Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res, 9, 57. https://doi.org/10.1186/bcr1762
  38. Fernandes A, Bianchi G , Feltri AP, et al (2015). Presence of human papillomavirus in breast cancer and its association with prognostic factors. Ecancer, 9, 548.
  39. Ford NA, Rossi EL, Barnett K, et al (2015). Omega-3-acid ethyl esters block the protumorigenic effects of obesity in mouse models of postmenopausal basal-like and claudin-low breast cancer. Cancer Prev Res, 8, 796-806. https://doi.org/10.1158/1940-6207.CAPR-15-0018
  40. Gao X, Wang H, Pollok KE, et al (2015). Activation of deathassociated protein kinase in human peritumoral tissue: A potential therapeutic target. J Clin Neurosci, 10, 1655-60.
  41. Gazinska P, Grigoriadis A, Brown JP, et al (2013). Comparison of basal-like triple-negative breast cancer defined by morphology, immunohistochemistry and transcriptional profiles. Modern Pathol, 1-12
  42. Gheibi A, Kazemi M, Baradaran A, et al (2012). Study of promoter methylation pattern of 14-3-3 sigma gene in normal and cancerous tissue of breast: a potential biomarker for detection of breast cancer in patients. Adv Biomed Res, 1, 80
  43. Gonzalez-Angulo AM, Timms KM, Liu S, et al (2011). Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res, 17, 1082-9 https://doi.org/10.1158/1078-0432.CCR-10-2560
  44. Goodwin PJ, Ennis M, Pritchard K I, et al (2009). Prognostic Effects of 25-Hydroxyvitamin D Levels in Early Breast Cancer. J Clin, 27, 3757-63. https://doi.org/10.1200/JCO.2008.20.0725
  45. Green JA, Robertson LJ, Clark AH (1993). Glutathione S-transferase expression in benign and malignant ovarian tumours. Br J Cancer, 68, 235-9. https://doi.org/10.1038/bjc.1993.321
  46. Gucalp A, Traina TA (2010).Triple-negative breast cancer: role of the androgen receptor, Cancer J, 16, 62-65. https://doi.org/10.1097/PPO.0b013e3181ce4ae1
  47. Hachana M, Amara K, Ziadi S et al (2012). Investigation of human JC and BK polyomaviruses in breast carcinomas. Breast Cancer Res Treat, 133, 969-77. https://doi.org/10.1007/s10549-011-1876-5
  48. Hafez MM, Al-Shabanah OA, Al-Rejaie SS, et al (2015). Increased hypermethylation of glutathione s-transferase p1, dna-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Asian Pac J Cancer Prev, 16, 541-9. https://doi.org/10.7314/APJCP.2015.16.2.541
  49. Haldipur P, Gillies GS, Janson OK, et al (2014). Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. Elife, 16, 3.
  50. Han B, Audeh W, Jin Y, et al (2013). Biology and treatment of basal-like breast cancer.in cell and molecular biology of breast cancer, Eds Schatten H. Humana Press, Springer New York Heidelberg Dordrecht London Numbers, 2013947794
  51. Herschkowitz J I, He X, Fan C, et al (2008). The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res, 10, 5.
  52. Holleman A, den Boer ML, de Menezes RX, et al (2006). The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood, 107, 769-76. https://doi.org/10.1182/blood-2005-07-2930
  53. Holt PR, Arber N, Halmos B, et al (2002). Colonic epithelial cell proliferation decreases with increasing levels of serum 25-hydroxy vitamin D. Cancer Epidemiol Biomarkers Prev, 11, 113-9
  54. Hudis CA and Gianni L (2011). Triple-negative breast cancer: an unmet medical need. Oncologist, 16 Suppl 1, 1-11.
  55. IARC (2012) Personal habits and indoor combustions. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans,. 100E, World Health Organization, ; http://monographs.iarc.fr/ENG/Monographs/vol100B/ mono100E.pdf Lyon, France.
  56. IARC (2012). Biological agents. Monographs on the Evaluation of Carcinogenic Risks to Humans,.100B, World Health Organization, ; http://monographs.iarc.fr/ENG/Monographs/vol100B/ mono100B.pdf Lyon, France.
  57. Imperiale MJ (2000). The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virol, 267, 1-7. https://doi.org/10.1006/viro.1999.0092
  58. Inoue T, Ishida T, Sugio K, et al (1995). Glutathione S transferase Pi is a powerful indicator in chemotherapy of human lung squamous-cell carcinoma. Respirat, 62, 223-7. https://doi.org/10.1159/000196451
  59. Je EC, Lca BS, Ga GA (2013). The role of transcription factor twist in cancer cells. J Genet Syndr Gene, 4, 1-7.
  60. Jeronimo C, Usadel H, Henrique R, et al (2002). Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urol, 60, 1131-5. https://doi.org/10.1016/S0090-4295(02)01949-0
  61. Jha AK, Nikbakht M, Jain V, et al (2012). p16(INK4a) and p15(INK4b) gene promoter methylation in cervical cancer patients. Oncol Lett, 3, 1331-5. https://doi.org/10.3892/ol.2012.655
  62. Jiao Q, Wu A, Shao G, et al (2014). The latest progress in research on triple negative breast cancer (TNBC): risk factors, possible therapeutic targets and prognostic markers. J Thoracic Disease, 6, 1329-35
  63. Jones C, Ford E, Gillett C, et al (2004). Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res, 10, 5988-97 https://doi.org/10.1158/1078-0432.CCR-03-0731
  64. Jung EJ, Kim IS, Lee EY, et al (2013). Comparison of methylation profiling in cancerous and their corresponding normal tissues from korean patients with breast cancer. Ann Lab Med, 33, 431-40. https://doi.org/10.3343/alm.2013.33.6.431
  65. Kantor RR, Giardina SL, Bartolazzi A, et al (1991). Monoclonal antibodies to glutathione S-transferase piimmunohistochemical analysis of human tissues and cancers. Int J Cancer, 47, 193-201. https://doi.org/10.1002/ijc.2910470206
  66. Khor GH, Froemming GR, Zain RB, et al (2013). DNA methylation profiling revealed promoter hypermethylationinduced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int J Med Sci, 10, 1727-39. https://doi.org/10.7150/ijms.6884
  67. Kieff E and Rickinson AB (2001). Epstein-Barr virus and its replication Ed. 4 Fields B. N. Knipe D. M. Howley P. M. eds. Fields Virol, 2, 2511-75
  68. Kleeff J, Ishiwata T, Friess H, et al. The helix-loop-helix protein Id2 is overexpressed in human pancreatic cancer. Cancer Res, 58, 3769 -72.
  69. Kneubil MC, Godoy AEF, Coelho GP, et al (2015). Prognostic factors correlation with androgen receptor (AR) in triple negative breast cancer (TNBC). J Clin Oncol, 2015 ASCO Annual Meeting, 33, 15.
  70. Koo JS, Jung W, Jeong J, et al (2009). The predictive role of e-cadherin and androgen receptor on in vitro chemosensitivity in triple negative breast cancer. Jpn J Clin Oncol, 39, 560-8. https://doi.org/10.1093/jjco/hyp065
  71. Krishnan AV, Feldman D (2011). Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin d. annu. rev. pharmacol. Toxicol, 51, 311-36.
  72. Kunitake T, Kitamura T, Guo J, et al (1995) Parent-to-child transmission is relatively common in the spread of the human polyomavirus JC virus. J Clin Microbiol, 33, 1448-51
  73. Lara-Medina F, Perez-Sanchez V, Saavedra-Perez D, et al (2011). Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer, 117, 3658-69. https://doi.org/10.1002/cncr.25961
  74. Lee WH, Morton RA, Epstein JI, et al (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A, 91, 11733-7 https://doi.org/10.1073/pnas.91.24.11733
  75. Lehmann BD and Pietenpol JA (2014). Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol, 232, 142-150. https://doi.org/10.1002/path.4280
  76. Li N, Bi X, Zhang Y, et al (2011). Human papillomavirus infection and sporadic breast carcinoma risk: a metaanalysis. Breast Cancer Res Treat, 126, 515-20 https://doi.org/10.1007/s10549-010-1128-0
  77. Li X, Li T, Chen D, et al (2016). Overexpression of lysinespecific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway. Oncol Rep, 35, 584-92. https://doi.org/10.3892/or.2015.4362
  78. Liu M, Mo QG, Wei CY, et al (2013). Platinum-based chemotherapy in triple-negative breast cancer: a metaanalysis. Oncol Lett, 5, 983-91. https://doi.org/10.3892/ol.2012.1093
  79. Liu X, Nugoli M, Laferriere J, et al (2011). Stromal retinoic acid receptor beta promotes mammary gland tumorigenesis. Proc Natl Acad Sci U S A, 108, 774-9. https://doi.org/10.1073/pnas.1011845108
  80. Liu Y, Burkhalter R, Symowicz J, et al (2012). Lysophosphatidic Acid disrupts junctional integrity and epithelial cohesion in ovarian cancer cells. J Oncol, 501492.
  81. Lux MP, Fasching PA, Beckmann MW (2006). Hereditary breast and ovarian cancer: review and future perspectives. J Mol Med, 84, 16-28. https://doi.org/10.1007/s00109-005-0696-7
  82. Maire V, Baldeyron C, Richardson M, et al (2013). TTK/hMPS1 is an attractive therapeutic target for triplenegative breast cancer. Plos one, 8, 5
  83. Maksimenko J, Irmejs A, Trofimovics G et al (2012). BRCA1 mutation in the triple- negative breast cancer group. Hereditary Cancer Clin Practice, 10, A15
  84. Martin LJ, Li Q, Melnichouk O, et al (2011) A randomized trial of dietary intervention for breast cancer prevention. Cancer Res, 71, 123-33. https://doi.org/10.1158/0008-5472.CAN-10-1436
  85. Masferrer JL, Leahy KM, Koki AT, et al (2000). Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res, 60, 1306-11.
  86. Mazouni C, Fina F , Romain S, et al (2015). Outcome of Epstein- Barr virus-associated primary breast cancer. Molecular Clinical Oncol, 3, 295-8 https://doi.org/10.3892/mco.2014.459
  87. McCleland ML, Adler AS, Shang Y, et al (2012). An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res, 72, 5812-23 https://doi.org/10.1158/0008-5472.CAN-12-1098
  88. McGhan LJ, McCullough AE, Protheroe CA, et al (2014). Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann Surg Oncol, 21, 361-367 https://doi.org/10.1245/s10434-013-3260-7
  89. McNamaraa KM, Yodaa T, Takagi K, et al (2013). Androgen receptor in triple negative breast cancer. J Steroid Biochemistry Molecular Biol, 133, 66-76. https://doi.org/10.1016/j.jsbmb.2012.08.007
  90. Medimegh I, Omrane I, Privat M (2014). MicroRNAs expression in triple negative vs non triple negative breast cancer in tunisia: interaction with clinical outcome. Plos one, 9, 11
  91. Mehrotra J, Vali M, McVeigh M, et al (2004). Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res, 10, 3104-9. https://doi.org/10.1158/1078-0432.CCR-03-0118
  92. Miedler J, Abdul-Karim F, Wang N, et al (2009). MUC1 expression in early-stage triple-negative breast cancer. J Cancer Res, 69, 1916-30. https://doi.org/10.1158/0008-5472.CAN-08-1693
  93. Millikan RC, Newman B, Tse CK, et al (2008). Epidemiology of basal-like breast cancer. Breast Cancer Res Treat, 109, 123-39. https://doi.org/10.1007/s10549-007-9632-6
  94. Morales-Sanchez A and Fuentes-Panana EM (2014). Human viruses and cancer. Viruses, 6, 4047-79 https://doi.org/10.3390/v6104047
  95. Morris GJ, Naidu S, Topham AK, et al (2007). Differences in breast carcinoma characteristics in newly diagnosed african- american and caucasian patients: a single-institution compilation compared with thenational cancer institute’s surveillance, epidemiology, and end results database. Cancer, 10, 876-84
  96. Mosalpuria k, Hall C, Krishnamurthy S, et al (2014). Cyclooxygenase 2 expression in non metastatic triple negative breast cancer patients. Molecular Clin Oncol, 2, 845-50. https://doi.org/10.3892/mco.2014.327
  97. Muendlein A, Rohde BH, Gasser K, et al (2015). Evaluation of BRCA1/2 mutational status among German and Austrian women with triple negative breast cancer. J Cancer Res Clin Oncol.
  98. Murai Y, Zheng HC, Abdel Aziz HO, et al (2007). High JC virus load in gastric cancer and adjacent non-cancerous mucosa. Cancer Sci, 98, 25-31. https://doi.org/10.1111/j.1349-7006.2006.00354.x
  99. Murillo G, Matusiak D, Benya RV, et al (2007). Chemopreventive Efficacy of 25-Hydroxyvitamin D3 in Colon Cancer. J Steroid Biochem Mol Biol, 103, 763-7. https://doi.org/10.1016/j.jsbmb.2006.12.074
  100. Murphy CG, Moynahan ME (2010). BRCA gene structure and function in tumor suppression: a repair-centric perspective. Cancer J, 16, 39-47. https://doi.org/10.1097/PPO.0b013e3181cf0204
  101. Nagasawa S, Sedukhina AS , Nakagawa Y, et al (2015). LSD1 overexpression is associated with poor prognosis in basallike breast cancer, and sensitivity to PARP inhibition. Plos One, 10, 1371.
  102. Narayan G, Arias-Pulido H, Koul S, et al (2003). Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer, 2, 24. https://doi.org/10.1186/1476-4598-2-24
  103. Niitsu Y, Takahashi Y, Saito T, et al (1989). Serum glutathione- S-transferase-pi as a tumor marker for gastrointestinal malignancies. Cancer, 63, 317-23. https://doi.org/10.1002/1097-0142(19890115)63:2<317::AID-CNCR2820630219>3.0.CO;2-P
  104. O'Byrne KJ, Dalgleish AG (2001). Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer, 85, 473-83. https://doi.org/10.1054/bjoc.2001.1943
  105. O'Reilly EA, Gubbins L, Sharma S, et al (2015). The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin, 3, 257-75. https://doi.org/10.1016/j.bbacli.2015.03.003
  106. Ohi Y, Umekita Y, Yoshioka T, et al (2011). Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathol, 59, 776-80 https://doi.org/10.1111/j.1365-2559.2011.03884.x
  107. Peiris AN, Bailey BA, Manning T (2013). Relationship of vitamin D monitoring and status to bladder cancer survival in veterans. Southern Med J, 106, 2.
  108. Peshkin BN, Alabek M L, Isaacs C (2010). BRCa1/2 mutations and triple negative breast cancers. Breast Dis, 32.
  109. Peurala E, Koivunen P, Haapasaari KM, et al (2013). The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast Cancer Res, 15, 5.
  110. Piana AF, Sotgiu G, Muronib MR, et al (2014). HPV infection and triple-negative breast cancers: an Italian case-control study. Virol J, 11, 190 https://doi.org/10.1186/s12985-014-0190-3
  111. Prentice RL, Caan B, Chlebowski RT, et al (2006). Low-fat dietary pattern and risk of invasive breast cancer: the women’s health initiative randomized controlled dietary modification trial. JAMA, 295, 629-42 https://doi.org/10.1001/jama.295.6.629
  112. Puisieux A, Valsesia-Wittmann S, Ansieau S (2006) A twist for survival and cancer progression. Br J Cancer, 94, 13-17. https://doi.org/10.1038/sj.bjc.6602876
  113. Radpour R, Barekati Z, Kohler C, et al (2011). Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One, 6, 16080. https://doi.org/10.1371/journal.pone.0016080
  114. Raffo P, Emionite L, Colucci L, et al (2000). Retinoid receptors: pathways of proliferation inhibition and apoptosis induction in breast cancer cell lines. Anticancer Res, 20, 1535-43.
  115. Rainville C, Khan Y, Tisman G (2009). Triple negative breast cancer patients presenting with low serum vitamin D levels: a case series. Cases J, 2, 83-90. https://doi.org/10.1186/1757-1626-2-83
  116. Randall BJ, Angus B, Akiba R, et al (1990). Glutathione S-transferase (placental) as a marker of transformation in the human cervix uteri: an immunohistochemical study. Br J Cancer, 62, 614-8. https://doi.org/10.1038/bjc.1990.340
  117. Ray PS, Wang J, Qu Y, et al (2010). FOXC1 is a potential prognostic biomarker with functional signifi cance in basallike breast cancer. Cancer Res, 70, 3870-6. https://doi.org/10.1158/0008-5472.CAN-09-4120
  118. Rencic A, Gordon J, Otte J, et al (1996). Detection of JC virus DNA sequence and expression of the viral oncoprotein, tumor antigen, in brain of immunocompetent patient with oligoastrocytoma. Proc Natl Acad Sci USA, 93, 7352-7. https://doi.org/10.1073/pnas.93.14.7352
  119. Robinson TJW, Liu JC, Vizeacoumar F, et al (2013). RB1 Status in Triple Negative Breast Cancer Cells Dictates Response to Radiation Treatment and Selective Therapeutic Drugs. Plos One, 11
  120. Romieu I (2011). Diet and breast cancer. Salud Publica Mex 53(5): Royston P, White IR (2011) Multiple imputation by chained equiations (MICE): implementation in Stata. J Stat Softw, 45, 1-19
  121. Roy R, Chun J, Powell SN (2012). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer, 12, 68-78. https://doi.org/10.1038/nrc3181
  122. Safarpour D, Pakneshan S, Tavassoli FA (2014). Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res, 4, 353-68.
  123. Saleh AD, Simone BA, Palazzo J, et al (2013). Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 12, 1955-63. https://doi.org/10.4161/cc.25016
  124. Satta T, Isobe K, Yamauchi M, et al (1992). Expression of MDR1 and glutathione S transferase-pi genes and chemosensitivities in human gastrointestinal cancer. Cancer, 69, 941-6. https://doi.org/10.1002/1097-0142(19920215)69:4<941::AID-CNCR2820690418>3.0.CO;2-H
  125. Serrano M, Lin AW, McCurrach ME, et al (1997). Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16 INK4a. Cell, 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  126. Shao T, Klein P, Grossbard M L (2012). Vitamin D and breast cancer. The Oncologist, 17, 36-45 https://doi.org/10.1634/theoncologist.2011-0278
  127. Sharma A, Comstock CES, Knudsen ES, et al ( 2007). Retinoblastoma Tumor Suppressor Status Is a Critical Determinant of Therapeutic Response in Prostate Cancer Cells. Cancer Res, 67, (13).
  128. Sheikh A, Hussain SA, Ghori Q et al (2015). The spectrum of genetic mutations in breast cancer. APJCP, 16 (6), 2177-85.
  129. Sherr CJ (1996). Cancer cell cycles. Science, 274, 1672-7. https://doi.org/10.1126/science.274.5293.1672
  130. Shin SK, Li MS, Fuerst F, et al (2006). Oncogenic T-antigen of JC virus is present frequently in human gastric cancers. Cancer, 107, 481-8. https://doi.org/10.1002/cncr.22028
  131. Silla ZT, Naidoo J, Kidson SH, et al (2014). Signals from the lens and Foxc1 regulate the expression of key genes during the onset of corneal endothelial development. Exp Cell Res, 322(2), 381-8. https://doi.org/10.1016/j.yexcr.2014.01.016
  132. Simic T, Mimic-Oka J, Savic-Radojevic A, et al (2005). Glutathione S-transferase T1-1 activity upregulated in transitional cell carcinoma of urinary bladder. Urol, 65, 1035-40. https://doi.org/10.1016/j.urology.2005.01.005
  133. Singh-Ranger G, Salhab M. Mokbel K (2008). The role of cyclooxygenase-2 in breast cancer: review. Breast Cancer Res Treat, 109, 189-98 https://doi.org/10.1007/s10549-007-9641-5
  134. Siroy A, Abdul-Karim FW, Miedler J, et al (2013). MUC1 is expressed at high frequency in early-stage basal-like triple negative breast cancer. Hum Pathol, 44, 2159-66. https://doi.org/10.1016/j.humpath.2013.04.010
  135. Slaoui M, El Mzibri M, Razine R, et al (2014). Detection of MMTV-like sequences in Moroccan breast cancer cases. Infectious Agents Cancer, 9, 37. https://doi.org/10.1186/1750-9378-9-37
  136. Soprano DR, Qin P, Soprano KJ (2004). Retinoic acid receptors and cancers. Annu Rev Nutr, 24, 201-221. https://doi.org/10.1146/annurev.nutr.24.012003.132407
  137. Stead LA, Lash TL, Sobieraj JE, et al (2009). Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res, 11, R18. https://doi.org/10.1186/bcr2242
  138. Sturgeon SR, Balasubramanian R, Schairer C, et al (2012). Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls. Epigenetics, 7, 1258-67. https://doi.org/10.4161/epi.22220
  139. Suijkerbuijk SJ, van Osch MH, Bos FL, et al (2010). Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res, 70, 4891-900. https://doi.org/10.1158/0008-5472.CAN-09-4319
  140. Sung CO, Lee KW, Han S, et al (2011). Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol, 179, 1827-38. https://doi.org/10.1016/j.ajpath.2011.06.032
  141. Tan J, Gu Y, Zhang X, et al (2012). Hypermethylation of CpG islands is more prevalent than hypomethylation across the entire genome in breast carcinogenesis. Clin Exp Med, 13, 1-9
  142. Thompson MP and kurzrock R (2004). Epstein-Barr virus and cancer. Clin Cancer Res, 10, 803-21. https://doi.org/10.1158/1078-0432.CCR-0670-3
  143. Toffoli G, Frustaci S, Tumiotto L, et al (1992). Expression of MDR1 and GST-pi in human soft tissue sarcomas: relation to drug resistance and biological aggressiveness. Ann Oncol, 3, 63-9. https://doi.org/10.1093/oxfordjournals.annonc.a058073
  144. Trachte AL, Suthers SE, Lerner MR, et al (2002). Increased expression of alpha-1-antitrypsin, glutathione S-transferase pi and vascular endothelial growth factor in human pancreatic adenocarcinoma. Am J Surg, 184, 642-7. https://doi.org/10.1016/S0002-9610(02)01105-4
  145. Trichopoulou A, Bamia C, Lagiou P, et al (2010). Conformity to traditional Mediterranean diet and breast cancer risk in the Greek EPIC (European Prospective Investigation into Cancer and Nutrition) cohort. Am J Clin Nutr, 92, 620-5. https://doi.org/10.3945/ajcn.2010.29619
  146. True LD (2014). Methodological requirements for valid tissuebased biomarker studies that can be used in clinical practice. Virchows Arch, 464, 257-63 https://doi.org/10.1007/s00428-013-1531-0
  147. Turashvili G, McKinney SE , Goktepeet O, et al (2011). P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol, 24, 64-81. https://doi.org/10.1038/modpathol.2010.189
  148. Umetani N, Takeuchi H, Fujimoto A, et al (2004). Epigenetic inactivation of id4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clin Cancer Res, 10, 7475-83 https://doi.org/10.1158/1078-0432.CCR-04-0689
  149. Van de Vijver M J (2014). Molecular tests as prognostic factors in breast cancer. Virchows Arch, 464, 283-91. https://doi.org/10.1007/s00428-014-1539-0
  150. Villarreal-Garza C, Weitzel JN, Llacuachaqui M, et al (2015). The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer. Breast Cancer Res Treat, 150, 389-94. https://doi.org/10.1007/s10549-015-3312-8
  151. Von Minckwitz G, Martin M (2012). Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol, 35-9
  152. Wang J, et al (2012). FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene, 31, 4798-802. https://doi.org/10.1038/onc.2011.635
  153. Wang NP, To H, Lee WH, et al (1993). Tumor suppressor activity of RB and p53 genes in human breast carcinoma cells. Oncogene, 8, 279-88.
  154. Wang Y, Jiang JD, Xu D, et al (2004). A MMTV-like LTR superantigen in human breast cancer. Cancer Res, 64, 4105-11. https://doi.org/10.1158/0008-5472.CAN-03-3880
  155. Wani HA, Beigh MA, Amin S, et al (2013). Methylation profile of promoter region of p16 gene in colorectal cancer patients of Kashmir valley. J Biol Regul Homeost Agents, 27, 297- 307.
  156. WCRF/AICR (2007). World cancer research fund/american institute for cancer research. food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR: Washington DC.
  157. WCRF/AICR (2010). World cancer research fund/american institute for cancer research. continuous update project report. food, nutrition, physical activity, and the prevention of breast cancer.
  158. Willems L, et al (2012). PI3K and mTOR signaling pathways in cancer: new data on targeted therapies. Curr Oncol Rep, 14, 129-38 https://doi.org/10.1007/s11912-012-0227-y
  159. Wilson JW, Deed RW, Inoue T, et al (2001). Expression of Id helix-loophelix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index. Cancer Res, 61, 8803-10.
  160. Wong-Brown MW, Meldrum CJ, Carpenter JE, et al (2015). Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat, 150, 71-80. https://doi.org/10.1007/s10549-015-3293-7
  161. Wu Y, Sarkissyan M, Elshimali Y, et al (2013). Triple negative breast tumors in african-american and hispanic/latina women are high in CD44+, Low in CD24+, and Have Loss of PTEN. Plos One, 8, 10.
  162. Xiong J, Li Y, Huang K, et al (2014). Association between dapk1 promoter methylation and cervical cancer: a meta-analysis. Plos One, 9, 107272 https://doi.org/10.1371/journal.pone.0107272
  163. Yamamoto N, Nakayama T, Kajita M, et al (2012). Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res Treat, 132, 165-73 https://doi.org/10.1007/s10549-011-1575-2
  164. Young SR, Pilarski RT, Donenberg T, et al (2009). The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer, 9, 86 https://doi.org/10.1186/1471-2407-9-86
  165. Yu L, Liu C, Vandeusen J, et al (2005). Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nature Genetics, 37, 3.
  166. Zhang W, Jiao H, Zhang X, et al (2015). Correlation between the expression of DNMT1, and GSTP1 and APC, and the methylation status of GSTP1 and APC in association with their clinical significance in prostate cancer. Mol Med Rep, 12, 141-6. https://doi.org/10.3892/mmr.2015.3402
  167. Zhao J, Zhao D, Poage GM, et al (2015). Death-associated protein kinase 1 promotes growth of p53-mutant cancers. J Clin Investigat, 125, 7.
  168. Zhou L, Li K, Luo Y, et al (2013). Novel prognostic markers for patients with triple negative breast cancer. Hum Pathol, 44, 2180-7. https://doi.org/10.1016/j.humpath.2013.03.021

Cited by

  1. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis vol.17, pp.11, 2016, https://doi.org/10.3390/ijms17111903
  2. Efficiency of Cytokine-Induced Killer Cells in Combination with Chemotherapy for Triple-Negative Breast Cancer vol.21, pp.2, 2018, https://doi.org/10.4048/jbc.2018.21.2.150