Tensile, Dynamic Mechanical, and Abrasion Properties of Glass Fiber Reinforced Diepoxidized Polycardanol Composites Cured by Electron Beam

전자빔에 의해 경화된 유리섬유/Diepoxidized Polycardanol 복합재료의 인장, 동역학 및 마모 특성

  • Cheon, Jinsil (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 천진실 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Received : 2016.05.18
  • Accepted : 2016.06.14
  • Published : 2016.06.30


In the present study, the effect of electron beam irradiation on the tensile, dynamic mechanical, and abrasion properties of glass-fiber-reinforced diepoxidized polycardanol (DEPC) composites was explored. Triarylsulfonium hexafluoroantimonate, an antimonate-type photoinitiator (2 wt%) was added to diepoxidized cardanol (DEC) prior to composite curing by electron beam. The glass fabrics pre-impregnated with DEPC were consolidated by direct irradiation of electron beam at 400, 500, and 600 kGy at ambient temperature and pressure. The composite properties strongly depend on the applied electron beam intensity. The result indicates that electron beam curing of glass fiber/DEPC composites at 600 kGy resulted in the highest tensile modulus, tensile strength, dynamic storage modulus, abrasion resistance, and lowest damping among the applied electron beam absorption doses.


Supported by : 한국연구재단


  1. C. S. Lee, S. W. Park, and S. I. Kwon, "An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-blended Fuels", Energy & Fuels, 2005, 19, 2201-2208.
  2. S. Y. Park, Y. H. Kim, and B. K. Song, "Polymer Synthesis by Enzyme Catalysis", Polym. Sci. Technol., 2005, 16, 342-353.
  3. J. Cheon, D. Cho, B. K. Song, J. Park, B. Kim, and B. C. Lee, "Thermogravimetric and Fourier-transform Infrared Analyses on the Cure Behavior of Polycardanol Containing Epoxy Groups Cured by Electron Beam", J. Appl. Polym. Sci., 2015, 132, 41599.
  4. J. Cheon and D. Cho, "Effects of Electron Beam Absorption Dose on the Glass Transition, Thermal Expansion, Dynamic Mechanical Property and Water Uptake of Polycardanol Containing Epoxy Groups Cured by Electron Beam", J. Appl. Polym. Sci., 2015, 132, 42570
  5. Q. Zhou, D. Cho, B. K. Song, and H. J. Kim, "Curing Behavior of Polycardanol by MEKP and Cobalt Naphthenate Using Differential Scanning Calorimetry", J. Therm. Anal. Calori., 2010, 99, 277-294.
  6. C. Nah, J. H. Go, J. H. Byun, and B. S. Hwang, "Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids", Korean Soc. Compos. Mater., 2008, 21, 16-21.
  7. V. Pansare and A. Kulkarni, "Azo Dyes from Cashew Nut Shell Liquid Derivatives", J. Indian Chem. Soc., 1964, 41, 251-255.
  8. S. H. Aziz and M. P. Ansell, "The Effect of Alkalization and Fibre Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bast Fibre Composites: Part 2-Cashew Nut Shell Liquid Matrix", Compos. Sci. Technol., 2004, 64, 1231-1238.
  9. Y. H. Kim, K. Won, J. M. Kwon, H. S. Jeong, S. Y. Park, and E. S. An, "Synthesis of Polycardanol from A Renewable Resource Using a Fungal Peroxidase from Coprinus Cinereus", J. Mol. Cataly B: Enzym., 2005, 34, 33-38.
  10. K. Won, Y. H. Kim, E. S. An, Y. S. Lee, and B. K. Song, "Horseradish Peroxidase-catalyzed Polymerization of Cardanol in the Presence of Redox Mediators", Biomacromolecules, 2004, 5, 1-4.
  11. A. Govindan, "Cashew Nut Shell Liquid (CNSL): A Large Resource Base for Chemical Industry", Chem. Eng. World, 1997, 32, 79-80.
  12. M. Lubi and E. T. Thachil, "Cashew Nut Shell Liquid (CNSL)-A Versatile Monomer for Polymer Synthesis", Des. Monom. Polym., 2000, 3, 123-153.
  13. Q. Zhou, D. Cho, W. H. Park, B. K. Song, and H.-J. Kim, "FTIR Studies on the Curing Behavior of Polycardanol from Naturally Renewable Resources", J. Appl. Polym. Sci., 2011, 122, 2774-2778.
  14. Q. Zhou, D. Cho, B. K. Song, and H.-J. Kim, "Novel Jute/Polycardanol Biocomposites: Effect of Fiber Surface Treatment on Their Properties", Compos. Interf., 2009, 16, 781-795.
  15. D. A. Nishitsuji, G. Mariucci, M. C. Evora, and L. G. A. Silva, "Caticonic Concentration Effects on Electron Beam Cured of Carbon-Epoxy Composites", Radiat. Phys. Chem., 2010, 79, 306-309.
  16. S. Alessi, C. Dispenza, P. G. Fuochi, U. Corda, M. Lavalle, and G. Spadaro, "E-beam Curing of Epoxy-based Blends in Order to Produce High-Performance Composites", Radiat. Phys. Chem., 2007, 76, 1308-1311.
  17. G. Sui, Z. G. Zhang, C. Q. Chen, and W. H. Zhong, "Analyses on Curing Process of Electron Beam Radiation in Epoxy Resins", Mater. Chem. Phys., 2002, 78, 349-357.
  18. M. Zenkiewicz, "Effect of Electron Beam Irradiation on Some Mechanical Properties of Polymer Films", Radiat. Phys. Chem., 2004, 69, 373-378.
  19. Y. J. Jang, "Studies on the Effect of Electron Beam Irradiation on the Properties of Poly(lactic acid), the Blends, and the Biocomposites", Master Thesis, Kumoh National Institute of Technology, Gumi, Korea, 2012.
  20. D. Cho, Y. J. Jang, and J.-H. Choi, "Thermal Properties of Poly(lactic acid) Films Containing A Multi-functional Monomer Cross-linked by Electron Beam Irradiation", J. Biobased Mater. Bioener., 2014, 8, 130-136.
  21. B. K. Kim, D. Cho, O. H. Kwon, W. H. Park, and J.-H. Lee, "Effects of Electron Beam Irradiation on the Gel Fraction, Thermal and Mechanical Properties of Poly(butylene succinate) Crosslinked by Multi-functional Monomer", Mater. Design, 2015, 87, 428-435.
  22. S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, "Studies on Epoxy Resin Cured by Cationic Latent Thermal Catalysts: the Effect of the Catalysts on the Thermal, Rheological, and Mechanical Properties", J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 187-195.<187::AID-POLA210>3.0.CO;2-H
  23. J. V. Crivello, T. C. Walton, and R. Malik, 'Fabrication of Epoxy Matrix Composites by Electron Beam Induced Cationic Polymerization", Chem. Mater., 1997, 9, 1273-1284.
  24. D. A. Nishitsuji, G. Marinucci, M. C. Evora, and L. G. A. Silva, "Study of Electron Beam Curing Process Using Epoxy Resin System", Nuclear Instru. Meth, Phys. Res. B, 2007, 265, 135-138.
  25. J. V. Crivello, "Advanced Curing Technologies Using Photoand Electron Beam Induced Cationic Polymerization", Radiat. Phys. Chem., 2002, 64, 21-27.
  26. C. E. Corcione, G. Malucelli, M. Frigione, and A. Maffezzoli, "UV-curable Epoxy Systems Containing Hyperbranced Polymers: Kinetics Investigation by Photo-DSC and Real-time FT-IR Experiments", Polym. Testing, 2009, 28, 157-164.
  27. D. Cho, J. M. Seo, H. S. Lee, C. W. Cho, S. O. Han, and W. H. Park, "Property Improvement of Natural Fiber-reinforced Green Composites by Water Treatment", Adv. Compos. Mater., 2007, 16, 299-314.
  28. A. K. Mohanty, M. Misra, and G. Hinrichsen, "Biodegradable Polymers and Biocomposites: An Overview", Macromol. Mater. Eng., 2000, 276, 1-24.
  29. A. B. Strong, "Fundamentals of Composites Manufacturing Materials, Methodsm, and Applications", Second Ed., Society of Manufacturing Engineers, Michigan, pp.27-31, 2008.
  30. D. A. Nishisuji, G. Marinucci, M. C. Evora, and L. G. A. Silva, "Study of Electron Beam Curing Process Using Epoxy Resin System", Nuclear Instru. Meth. Phys. Res. B, 2007, 265, 135-138.
  31. L. Fengmei, B. Jianwen, C. Xiangbao, B. Huaying, and W. Huiliang, "Factors Influencing EB Curing of Epoxy Matrix", Radiat. Phys. Chem., 2002, 63, 557-561.
  32. T. Endo, F. Sanda, and T. Toneri, "Cationic Polymerization of Epoxide by Fluorenylphosphonium Salts as Thermally Latent Initiators. Substituent Effect on the Initiator Activity", Macromolecules, 2001, 34, 1518-1521.