Bactericidal Efficacy of a Fumigation Disinfectant Containing Paraformaldehyde Against Salmonella Typhimurium

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Son, Song-Ee (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yoo, Chang-Yeul (Department of Smart Information Convergence, Gyeongnam Provincial Namhae College) ;
  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Jung, Ji-Youn (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Kim, Suk (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2016.04.19
  • Accepted : 2016.05.03
  • Published : 2016.06.30


This study was performed to evaluate the bactericidal efficacy of a fumigation disinfectant containing 35% paraformaldehyde against Salmonella Typhimurium (S. Typhimurium). In this study, the efficacy test of a fumigant against S. Typhimurium was carried out according to French standard NF T 72-281. The S. Typhimurium working culture suspension number (N value), all bacteria numbers on the carriers exposed to the fumigant (n1, n2, and n3), the number of bacterial suspensions by the pour plate method (N1), the number of bacterial suspensions by the filter membrane method (N2), and the mean number of bacteria recovered on the control carriers (T value), were obtained from the preliminary test. In addition, the reduction number of S. Typhimurium exposed to the fumigant (d value) was calculated using the T value, the mean number of bacteria in the recovery solution (n'1) and the mean number of bacteria on carriers plated in agar (n'2). The N value was $5.5{\times}10^8$ colony forming units (CFU)/mL, and n1, n2, and n3 were higher than 0.5N1, 0.5N2 and 0.5N1, respectively. Additionally, the T value was $3.5{\times}10^6CFU/carrier$. In terms of the bactericidal effect of the fumigant, the d value was 5.25. According to the French standard for fumigants, the d value for an effective bactericidal fumigant should be greater than 5. The results indicated that the fumigant containing 35% paraformaldehyde had an efficient bactericidal activity against S. Typhimurium, and, therefore, can be used to disinfect food materials and kitchen appliances contaminated with foodborne bacteria.


  1. Rooney, R.M., Cramer, E.H., Mantha, S., Nichols, G., Bartram, J.K., Farber, J.M. and Benembarek, P.K.: A review of outbreaks of foodborne disease associated with passenger ships: evidence for risk management. Public Health Rep. 119, 427-434 (2004).
  2. Kunwar, R., Singh, H., Mangla, V. and Hiremath, R.: Outbreak investigation: Salmonella food poisoning. Med. J. Armed. Forces India, 69, 388-391 (2013).
  3. World Health Organization (WHO): Foodborne Disease Outbreaks: Guidelines for Investigation and Control. WHO, Geneva, pp. 83 (2008).
  4. Kim, G.S., Kim, D.H., Lim, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Rhee, M.H., Lee, H.J. and Kim, S.: Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the RAW 264.7 macrophage. Biol. Pharm. Bull. 31, 2012-2017 (2008).
  5. Cha, C.N., Lee, Y.E., Son, S.E., Yoo, C.Y., Kim, S. and Lee, H.J.: Antimicrobial efficacies of Citra-Kill(R), disinfectant solution against Salmonella typhimurium and Brucella ovis. J. Environ. Health Sci. 37, 482-487 (2011).
  6. Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O'Brien, S.J., Jones, T.F., Fazil, A. and Hoekstra, R.M.: The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882-889 (2010).
  7. European Food Safety Authority (EFSA): The community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA J. 223, 312 (2009).
  8. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. and Griffin, P.M.: Foodborne illness acquired in the United States - major pathogens. Emerg. Infect. Dis. 17, 7-15 (2011).
  9. Batz, M.B., Hoffmann, S., Morris, J.G., Jr.: Ranking the risks: The 10 pathogen-food combinations with the greatest burden on public health. Emerging Pathogens Institute, University of Florida, Gainesville, pp. 8-10 (2011).
  10. Park, M.S., Kim, Y.S., Lee, S.H., Kim, S.H., Park, K.H. and Bahk, G.J.: Estimating the burden of foodborne disease, South Korea, 2008-2012. Foodborne Pathog. Dis. 12, 207-213 (2015).
  11. Cabral, J.P.: Water microbiology - Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7, 3657-3703 (2010).
  12. Drumo, R., Pesciaroli, M., Ruggeri, J., Tarantino, M., Chirullo, B., Pistoia, C., Petrucci, P., Martinelli, N., Moscati, L., Manuali, E., Pavone, S., Picciolini, M., Ammendola, S., Gabai, G., Battistoni, A., Pezzotti, G., Alborali, G.L., Napolioni, V., Pasquali, P. and Magistrali, C.F.: Salmonella enterica Serovar Typhimurium exploits inflammation to modify swine intestinal microbiota. Front. Cell Infect. Microbiol. 5, 106 (2016).
  13. Whitehead, R.N., Overton, T.W., Kemp, C.L., Webber, M.A.: Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS One, 6, e22833 (2011).
  14. Coelhan, M., Bromig, K.H., Glas, K. and Roberts, A.L.: Determination and levels of the biocide ortho-Phenylphenol in canned beers from different countries. J. Agric. Food Chem. 54, 5731-5735 (2006).
  15. Trinetta, V., Morgan, M.T. and Linton, R.H.: Use of high-concentration-short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. Food Microbiol. 27, 1009-1015 (2010).
  16. Formato, A., Naviglio, D., Pucillo, G.P. and Nota, G.: Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers. J. Agric. Food Chem. 60, 331-338 (2012).
  17. Taylor, L.A., Barbeito, M.S. and Gremillion, G.G.: Paraformaldehyde for surface sterilization and detoxification. Appl. Microbiol. 17, 614-618 (1969).
  18. Kahrs, R.F.: General disinfection guidelines. Rev. Sci. Tech. Off. Int. Epiz. 14, 105-122 (1995).
  19. Simoes, M., Lucia C. Simoes, L.C. and Vieira, M.J.: A review of current and emergent biofilm control strategies. LWT - Food Sci. Technol. 43, 573-583 (2010).
  20. Carter, M.Q., Chapman, M.H., Gabler, F. and Brandl, M.T.: Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiol. 49, 189-196 (2015).
  21. Neighbor, N.K., Newberry, L.A., Bayyari, G.R., Skeeles, J.K., Beasley, J.N. and McNew, R.W.: The effect of microaerosolized hydrogen peroxide on bacterial and viral poultry pathogens. Poult Sci. 73, 1511-1516 (1994).
  22. Association Francaise de Normalisation (AFNOR): Methods of airborne disinfection of surfaces - Determination of bactericidal, fungicidal, yeasticidal and sopricidal activity. French standard NF T 72-281, AFNOR, Saint-Denis, pp. 6-22 (2009).
  23. McFarland, J.: Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA 49, 1176-1178 (1907).
  24. Mahmoud, B.S. and Linton, R.H.: Inactivation kinetics of inoculated Escherichia coli O157:H7 and Salmonella enterica on lettuce by chlorine dioxide gas. Food Microbiol. 25, 244-252 (2008).
  25. Himathongkham, S., Nuanualsuwan, S., Riemann, H. and Cliver, D.O.: Reduction of Escherichia coli O157:H7 and Salmonella typhimurium in artificially contaminated alfalfa seeds and mung beans by fumigation with ammonia. J. Food Prot. 64, 1817-1819 (2001).
  26. Park, E.K., Kim, Y., Yu, E.A., Yoo, C.Y., Choi, H., Kim, S. and Lee, H.J.: Bactericidal efficacy of Fumagari OPP(R), fumigant against Escherchia coli and Salmonella typhimurium. J. Fd Hyg. Safety, 28, 1-7 (2013).