DOI QR코드

DOI QR Code

Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach

  • Cho, Jin Hyoung ;
  • Jeong, Jin Young ;
  • Lee, Ra Ham ;
  • Park, Mi Na ;
  • Kim, Seok-Ho ;
  • Park, Seon-Min ;
  • Shin, Jae-Cheon ;
  • Jeon, Young-Joo ;
  • Shim, Jung-Hyun ;
  • Choi, Nag-Jin ;
  • Seo, Kang Seok ;
  • Cho, Young Sik ;
  • Kim, MinSeok S. ;
  • Ko, Sungho ;
  • Seo, Jae-Min ;
  • Lee, Seung-Youp ;
  • Chae, Jung-Il ;
  • Lee, Hyun-Jeong
  • Received : 2016.01.19
  • Accepted : 2016.04.18
  • Published : 2016.08.01

Abstract

Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle.

Keywords

Adipose Depots;Hanwoo;Liquid Chromatography-tandem Mass Spectrometry;Marbling;Meat Quality

References

  1. Arnold, A. M., J. M. Peralta, and M. L. Thonney. 1996. Ontogeny of growth hormone, insulin-like growth factor-I, estradiol and cortisol in the growing lamb: Effect of testosterone. J. Endocrinol. 150:391-399. https://doi.org/10.1677/joe.0.1500391
  2. Choy, Y. H., B. H. Park, T. J. Choi, J. G. Choi, K. H. Cho, S. S. Lee, Y. L. Choi, K. C. Koh, and H. S. Kim. 2012. Estimation of relative economic weights of hanwoo carcass traits based on carcass market price. Asian Australas. J. Anim. Sci. 25:1667-1673. https://doi.org/10.5713/ajas.2012.12397
  3. Colbert, M. C. and E. Ciejek-Baez. 1988. Alternative promoter usage by aldolase A during in vitro myogenesis. Dev. Biol. 130:392-396. https://doi.org/10.1016/0012-1606(88)90444-7
  4. Destefanis, G., A. Brugiapaglia, M. T. Barge, and C. Lazzaroni. 2003. Effect of castration on meat quality in Piemontese cattle. Meat Sci. 64:215-218. https://doi.org/10.1016/S0309-1740(02)00184-5
  5. Dlugosz, A. A., P. B. Antin, V. T. Nachmias, and H. Holtzer. 1984. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J. Cell Biol. 99:2268-2278. https://doi.org/10.1083/jcb.99.6.2268
  6. Enns, D. L., S. Iqbal, and P. M. Tiidus. 2008. Oestrogen receptors mediate oestrogen-induced increases in post-exercise rat skeletal muscle satellite cells. Acta Physiol. (Oxf) 194:81-93. https://doi.org/10.1111/j.1748-1716.2008.01861.x
  7. Fritsche, S. and H. Steinhart. 1998. Differences in natural steroid hormone patterns of beef from bulls and steers. J. Anim. Sci. 76:1621-1625. https://doi.org/10.2527/1998.7661621x
  8. Gondret, F., N. Guitton, C. Guillerm-Regost, and I. Louveau. 2008. Regional differences in porcine adipocytes isolated from skeletal muscle and adipose tissues as identified by a proteomic approach. J. Anim. Sci. 86:2115-2125. https://doi.org/10.2527/jas.2007-0750
  9. Guo, B., K. Kongsuwan, P. L. Greenwood, G. Zhou, W. Zhang, and B. P. Dalrymple. 2014. A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep. J. Anim. Sci. Biotechnol. 5:35. https://doi.org/10.1186/2049-1891-5-35
  10. Hausman, G. J., S. P. Poulos, R. L. Richardson, C. R. Barb, T. Andacht, H. C. Kirk, and R. L. Mynatt. 2006. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells. J. Anim. Sci. 84:1666-1681. https://doi.org/10.2527/jas.2005-539
  11. Hidaka, K., I. Yamamoto, Y. Arai, and T. Mukai. 1993. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol. Cell Biol. 13:6469-6478. https://doi.org/10.1128/MCB.13.10.6469
  12. Hughes, J. M., S. K. Oiseth, P. P. Purslow, and R. D. Warner. 2014. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 98:520-532. https://doi.org/10.1016/j.meatsci.2014.05.022
  13. Inoue, K., S. Yamasaki, T. Fushiki, Y. Okada, and E. Sugimoto. 1994. Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur. J. Appl. Physiol. Occup. Physiol. 69:88-91. https://doi.org/10.1007/BF00867933
  14. Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704. https://doi.org/10.2527/jas.2012-6089
  15. Jeong, J., E. G. Kwon, S. K. Im, K. S. Seo, and M. Baik. 2012. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 90:2044-2053. https://doi.org/10.2527/jas.2011-4753
  16. Kahlert, S., C. Grohe, R. H. Karas, K. Lobbert, L. Neyses, and H. Vetter. 1997. Effects of estrogen on skeletal myoblast growth. Biochem. Biophys. Res. Commun. 232:373-378. https://doi.org/10.1006/bbrc.1997.6223
  17. Lee, D. K. 2002. Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 294:408-413. https://doi.org/10.1016/S0006-291X(02)00504-1
  18. Lee, D. M., P. Bajracharya, E. J. Lee, J. E. Kim, H. J. Lee, T. Chun, J. Kim, K. H. Cho, J. Chang, S. Hong, and I. Choi. 2011. Effects of gender-specific adult bovine serum on myogenic satellite cell proliferation, differentiation and lipid accumulation. In Vitro Cell Dev. Biol. Anim. 47:438-444. https://doi.org/10.1007/s11626-011-9427-2
  19. Lee, S. H., E. W. Park, Y. M. Cho, S. K. Kim, J. H. Lee, J. T. Jeon, C. S. Lee, S. K. Im, S. J. Oh, J. M. Thompson, and D. Yoon. 2007. Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers. J. Biochem. Mol. Biol. 40:757-764. https://doi.org/10.5483/BMBRep.2007.40.5.757
  20. Lin, J. J. and J. L. Lin. 1986. Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro. J. Cell Biol. 103:2173-2183. https://doi.org/10.1083/jcb.103.6.2173
  21. Maltin, C., D. Balcerzak, R. Tilley, and M. Delday. 2003. Determinants of meat quality: tenderness. Proc. Nutr. Soc. 62:337-347. https://doi.org/10.1079/PNS2003248
  22. Marston, S., M. Memo, A. Messer, M. Papadaki, K. Nowak, E. McNamara, R. Ong, M. El-Mezgueldi, X. Li, and W. Lehman. 2013. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum. Mol. Genet. 22:4978-4987. https://doi.org/10.1093/hmg/ddt345
  23. Nishimura, T. 2010. The role of intramuscular connective tissue in meat texture. Anim. Sci. J. 81:21-27. https://doi.org/10.1111/j.1740-0929.2009.00696.x
  24. Park, G. B., S. S. Moon, Y. D. Ko, J. K. Ha, J. G. Lee, H. H. Chang, and S. T. Joo. 2002. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80:129-136. https://doi.org/10.2527/2002.801129x
  25. Peachey, B. M., R. W. Purchas, and L. M. Duizer. 2002. Relationships between sensory and objective measures of meat tenderness of beef m. longissimusthoracis from bulls and steers. Meat Sci. 60:211-218. https://doi.org/10.1016/S0309-1740(01)00123-1
  26. Purchas, R. W., D. L. Burnham, and S. T. Morris. 2002. Effects of growth potential and growth path on tenderness of beef longissimus muscle from bulls and steers. J. Anim. Sci. 80:3211-3221. https://doi.org/10.2527/2002.80123211x
  27. Purslow, P. P. 2005. Intramuscular connective tissue and its role in meat quality. Meat Sci. 70:435-447. https://doi.org/10.1016/j.meatsci.2004.06.028
  28. Ren, H., L. Li, H. Su, L. Xu, C. Wei, L. Zhang, H. Li, W. Liu, and L. Du. 2011. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics 12:411. https://doi.org/10.1186/1471-2164-12-411
  29. Schreurs, N. M., F. Garcia, C. Jurie, J. Agabriel, D. Micol, D. Bauchart, A. Listrat, and B. Picard. 2008. Meta-analysis of the effect of animal maturity on muscle characteristics in different muscles, breeds, and sexes of cattle. J. Anim. Sci. 86:2872-2887. https://doi.org/10.2527/jas.2008-0882
  30. Sinha-Hikim, I., S. M. Roth, M. I. Lee, and S. Bhasin. 2003. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am. J. Physiol. Endocrinol. Metab. 285:E197-205. https://doi.org/10.1152/ajpendo.00370.2002
  31. Walsh, T. P., D. J. Winzor, F. M. Clarke, C. J. Masters, and D. J. Morton. 1980. Binding of aldolase to actin-containing filaments. Evidence of interaction with the regulatory proteins of skeletal muscle. Biochem. J. 186:89-98. https://doi.org/10.1042/bj1860089
  32. Walter, L. J., C. A. Gasch, T. J. McEvers, J. P. Hutcheson, P. Defoor, F. L. Marquess, and T. E. Lawrence. 2014. Association of pro-melanin concentrating hormone genotype with beef carcass quality and yield. J. Anim. Sci. 92:325-331. https://doi.org/10.2527/jas.2013-6931
  33. Wilting, S. M., R. A. van Boerdonk, F. E. Henken, C. J. Meijer, B. Diosdado, G. A. Meijer, C. le Sage, R. Agami, P. J. Snijders, and R. D. Steenbergen. 2010. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol. Cancer 9:167.
  34. Yan, J. X., R. Wait, T. Berkelman, R. A. Harry, J. A. Westbrook, C. H. Wheeler, and M. J. Dunn. 2000. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666-3672. https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6
  35. Zhang, H. M., Y. F. Su, Z. Y. Shi, and Y. S. Fu. 2014. cDNA clone and expression analysis of alpha-Tropomyosin during Japanese flounder (Paralichthys olivaceus) metamorphosis. Dongwuxue Yanjiu 35:307-312.
  36. Zuo, X., L. Echan, P. Hembach, H. Y. Tang, K. D. Speicher, D. Santoli, and D. W. Speicher. 2001. Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis 22:1603-1615. https://doi.org/10.1002/1522-2683(200105)22:9<1603::AID-ELPS1603>3.0.CO;2-I

Acknowledgement

Grant : Research Program for Agriculture Science & Technology Development

Supported by : National Institute of Animal Science