DOI QR코드

DOI QR Code

Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

  • Kim, Da-Woon ;
  • Kim, Gi-Yong ;
  • Kim, Hee-Kyoung ;
  • Kim, Jueun ;
  • Jeon, Sun Jeong ;
  • Lee, Chul Won ;
  • Lee, Hyang Burm ;
  • Yun, Sung-Hwan
  • Received : 2015.12.18
  • Accepted : 2016.02.18
  • Published : 2016.06.01

Abstract

Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multilocus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.

Keywords

Fusarium culmorum;Fusarium head blight;nivalenol production;rice paddy field air

References

  1. Animal, Plant and Fisheries Quarantine and Inspection Agency. 2013. List of plant quarantine fungi in Korea newly revised in 2013. Res. Plant Dis. 19:237-241.
  2. Bakan, B., Pinson, L., Cahagnier, B., Melcion, D., Sémon, E. and Richard-Molard, D. 2001. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit. Contam. 18:998-1003. https://doi.org/10.1080/02652030110050366
  3. Chandler, E. A., Simpson, D. R., Chandler, E. A., Duncan, R. S., Thomsett, M. A. and Nicholson, P. 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. Mol. Plant Pathol. 62:355-367. https://doi.org/10.1016/S0885-5765(03)00092-4
  4. Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  5. Demeke, T., Clear, R. M., Patrick, S. K. and Gaba, D. 2005. Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agarplate method and trichothecene analysis. Int. J. Food Microbiol. 103:271-284. https://doi.org/10.1016/j.ijfoodmicro.2004.12.026
  6. Gang, G., Miedacjner, T., Schuhmacher, U., Schollenberger, M. and Geiger, H. H. 1998. Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology 88:879-884. https://doi.org/10.1094/PHYTO.1998.88.9.879
  7. Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
  8. Han, Y. K., Kim, M. D., Lee, S. H., Yun, S. H. and Lee, Y. W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol. Microbiol. 63:768-779.
  9. Hogg, A. C., Johnston, R. H., Johnston, J. A., Klouser, L., Kephart, K. D. and Dyer, A. T. 2010. Monitoring fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology 100:49-57. https://doi.org/10.1094/PHYTO-100-1-0049
  10. Iwama, T., Katsube, K. and Ishii, H. 2007. Detection of thiophanate-methyl-resistant isolates of Fusarium culmorum, a causal agent of Fusarium head blight on wheat, in Aomori prefecture, northern Japan. Jpn. J. Phytopathol. 73:162-165. https://doi.org/10.3186/jjphytopath.73.162
  11. Jennings, P., Coates, M. E., Walsh, K., Turner, J. A. and Nicholson, P. 2004. Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol. 53:643-652. https://doi.org/10.1111/j.0032-0862.2004.01061.x
  12. Jung, B., Lee, S., Ha, J., Park, J. C., Han, S. S., Hwang, I., Lee, Y. W. and Lee, J. 2013. Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. Plant Pathol. J. 29:446-450. https://doi.org/10.5423/PPJ.NT.07.2013.0068
  13. Kerenyi, Z., Moretti, A., Waalwijk, C., Olah, B. and Hornok, L. 2004. Mating type sequences in asexually reproducing Fusarium species. Appl. Environ. Microbiol. 70:4419-4423. https://doi.org/10.1128/AEM.70.8.4419-4423.2004
  14. Kim, H., Kim, H. K., Lee, S. and Yun, S. H. 2015. The white collar complex is involved in sexual development of Fusarium graminearum. PLoS One 10:e0120293. https://doi.org/10.1371/journal.pone.0120293
  15. Kim, J. C., Park, A. R., Lee, Y. W., Youn, H. J. and Cha, S. H. 1993. Variation in trichothecene and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Korean J. Microbiol. 31:312-317.
  16. Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  17. Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
  18. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual. Wiley-Blackwell, Ames, IA, USA.
  19. Miedaner, T., Cumagun, C. J. R. and Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J. Phytopathol. 156:129-139. https://doi.org/10.1111/j.1439-0434.2007.01394.x
  20. Mishra, P. K., Fox, R. T. V. and Culham, A. 2003. Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Ann. Appl. Biol. 143:291-301. https://doi.org/10.1111/j.1744-7348.2003.tb00297.x
  21. Muthomi, J. W., Schutze, A., Dehne, H. W., Mutitu, E. W. and Oerke, E. C. 2000. Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J. Plant Dis. Protect. 107:113-123.
  22. Nielsen, L. K., Jensen, J. D., Rodriguez, A., Jorgensen, L. N. and Justesen, A. F. 2012. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 157:384-392. https://doi.org/10.1016/j.ijfoodmicro.2012.06.010
  23. Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J. M. and Chakraborty, S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol. 114:753-765. https://doi.org/10.1016/j.funbio.2010.07.001
  24. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U. S. A. 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  25. Parry, D. W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol. 44:207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  26. Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffmann, L. and Bohn, T. 2010. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 137:246-253. https://doi.org/10.1016/j.ijfoodmicro.2009.11.009
  27. Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M. and Migheli, Q. 2013. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 14:323-341. https://doi.org/10.1111/mpp.12011
  28. Stepien, L., Popiel, D., Koczyk, G. and CheLkowski, J. 2008. Wheat-infecting Fusarium species in Poland--their chemotypes and frequencies revealed by PCR assay. J. Appl. Genet. 49:433-441. https://doi.org/10.1007/BF03195644
  29. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  30. Waalwijk, C., Kastelein, P., Vries I., Kerényi, Z., Van der Lee, T., Hesselink, T., Kohl, J. and Kema, G. 2003. Major changes in Fusarium spp. in wheat in the Netherlands. Eur. J. Plant Pathol. 109:743-754. https://doi.org/10.1023/A:1026086510156
  31. Wagacha, J. M. and Muthomi, J. W. 2007. Fusarium culmorum:infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protect. 26:877-885. https://doi.org/10.1016/j.cropro.2006.09.003
  32. West, J. S., Holdgate, S., Townsend, J. A., Edwards, S. G., Jennings, P. and Fitt, B. D. L. 2012. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecol. 5:53-61. https://doi.org/10.1016/j.funeco.2011.03.003
  33. Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern europe and Asia. J. Plant Pathol. 92:7-18.

Cited by

  1. Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey 2017, https://doi.org/10.1007/s10658-017-1285-7
  2. The Nature, Sources, Detections and Regulations of Mycotoxins That Contaminate Foods and Feeds Causing Health Hazards for Both Human and Animals vol.08, pp.01, 2019, https://doi.org/10.4236/jacen.2019.81004

Acknowledgement

Supported by : Rural Development Administration