DOI QR코드

DOI QR Code

A NOTE ON THE JACOBI FIELDS ON MANIFOLDS

  • Kim, Hwajeong (Department of Mathematics, Hannam University)
  • Received : 2016.01.27
  • Accepted : 2016.05.11
  • Published : 2016.06.25

Abstract

We consider Jacobi filds as the first derivatives for ${\varepsilon}$, the energy of harmonic extensions, in a given manifold. In this paper we see that the Jacobi fild is bounded by the given boundary map. Here we give no restriction concerned with the curvature for the given manifold.

Keywords

Minimal surfaces;Plateau's problem

Acknowledgement

Supported by : Hannam University

References

  1. R.A. Adams, Sobolev Spaces, Academic Press, New York - San Francisco - London, 1975.
  2. M.L. Gromov, V.A. Rohlin, Imbeddings and immersion in Riemannian geometry, Russ. Math. Surveys 25 1970, 1-57.
  3. S. Hildebrandt, H. Kaul, K.O. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 1977, 1-16. https://doi.org/10.1007/BF02392311
  4. J. Hohrein, Existence of unstable minimal surfaces of higher genus in manifolds of nonpositive curvature, Dissertation, 1994.
  5. H. Kim, Unstable minimal surfaces of annulus type in manifolds, Dissertation, 2004.
  6. H. Kim, A variational approach to the regularity of the minimal surfaces of annulus type in Riemannian manifolds, Differ. Geom. Appl. 25 2007, 466-484. https://doi.org/10.1016/j.difgeo.2007.02.011
  7. H. Kim, Unstable minimal surfaces of annulus type in manifolds, Adv. Geom. 2009 Issue 3, 401-436.
  8. H. Kim, The second Derivative of the Energy Functional, Honam Mathematical Journal 34 2012 No.2, 191-198. https://doi.org/10.5831/HMJ.2012.34.2.191
  9. H. Kim, A Morse Theory for minimal surfaces in manifolds, Preprint 2015.
  10. M. Struwe, Plateau's Problem and the calculus of variations, Princeton U.P. 1998.
  11. H. Kim, A critical point theory for minmal surfaces spanning a wire in ${\mathbb{R}}^k$, J.reine angew. Math. 349 1984 1-23.
  12. H. Kim, A Morse Teory for annulus type minimal surfaces, J. Reine u. Angew. Math. 368 1986, 1-27.

Cited by

  1. Morse theory for minimal surfaces in manifolds vol.54, pp.2, 2018, https://doi.org/10.1007/s10455-018-9601-9