DOI QR코드

DOI QR Code

CURVATURES ON THE ABBENA-THURSTON MANIFOLD

  • Han, Ju-Wan (Department of Applied Mathematics, Pukyong National University) ;
  • Kim, Hyun Woong (Department of Applied Mathematics, Pukyong National University) ;
  • Pyo, Yong-Soo (Department of Applied Mathematics, Pukyong National University)
  • Received : 2016.01.03
  • Accepted : 2016.02.03
  • Published : 2016.06.25

Abstract

Let H be the 3-dimensional Heisenberg group, ($G=H{\times}S^1$, g) a product Riemannian manifold of Riemannian manifolds H and S with arbitrarily given left invariant Riemannian metrics respectively, and ${\Gamma}$ the discrete subgroup of G with integer entries. Then, on the Riemannian manifold ($M:=G/{\Gamma}$, ${\Pi}^*g=\bar{g}$), ${\Pi}:G{\rightarrow}G/{\Gamma}$, we evaluate the scalar curvature and the Ricci curvature.

Keywords

Heisenberg group;Abbena-Thurston manifold;scalar curvature;homogeneous Riemannian manifold;Ricci curvature

Acknowledgement

Supported by : Pukyong National University

References

  1. E. Abbena, An example of an almost Kaehler manifold which is not Kaehlerian, Bollettino U.M.I. 3-A (1984), 383-392.
  2. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
  3. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963.
  4. J. Milnor, Curvatures of left invariant metric on Lie groups, Advances in Math. 21 (1976), 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
  5. J.-S. Park and W.-T. Oh, The Abbena-Thurston manifold as a critical point, Canad. Math. Bull. 39 (1996), 352-359. https://doi.org/10.4153/CMB-1996-042-3
  6. J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Interdiscip. Inform. Sci. 11 (2005), 31-34.
  7. J.-S. Park, Differential geometric properties on the Heisenberg group, to appear in J. Korean Math. Soc.
  8. J.-S. Park, Surfaces embedded isometrically in the Heisenberg group, to appear.
  9. J.A. Wolf, Curvatures in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964), 271-274. https://doi.org/10.1090/S0002-9939-1964-0162206-7