DOI QR코드

DOI QR Code

A NOTE ON GENERALIZED EXTENDED WHITTAKER FUNCTION

  • Khan, Nabiullah (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University) ;
  • Ghayasuddin, Mohd (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University)
  • Received : 2015.08.28
  • Accepted : 2016.03.07
  • Published : 2016.06.25

Abstract

In the present paper, we define the generalized extended Whittaker function in terms of generalized extended conflent hypergeometric function of the first kind. We also study its integral representation, some integral transforms and its derivative.

Keywords

Beta function;Extended beta function;Confluent hypergeometric function;Extended confluent hypergeometric function;Gauss hypergeometric function;Extended Gauss hypergeometric function

References

  1. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi; Tables of integral transforms, vol. I, McGraw-Hill, New York, 1954.
  2. D. M. Lee, A. K. Rathie, R. K. Parmar, and Y. S. Kim, Generalization of Extended Beta Function, Hypergeometric and Confluent Hypergeometric Functions, Honam Mathematical Journal 33, no. 2 (2011), 187-206. https://doi.org/10.5831/HMJ.2011.33.2.187
  3. D. K. Nagar, R. A. M. Vasquez, and A. K. Gupta, Properties of the Extended Whittaker Function, Progress in Applied Mathematics, vol. 6, no. 2 (2013), 70-80.
  4. E. D. Rainville; Special functions, The Macmillan Company, New York, 1960.
  5. E. T. Whittaker, An expression of certain known functions as generalized hypergeometric functions, Bull. Amer. Math. Soc, 10, no. 3 (1903), 125-134. https://doi.org/10.1090/S0002-9904-1903-01077-5
  6. E. T. Whittaker and G. N. Watson, A course of modern analysis, Reprint of the 4th ed. Cambridge Mathematical Library, Cambridge., Cambridge University Press 1990.
  7. H. M. Srivastava and H. L. Manocha, A tretise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York 1984.
  8. H. Liu and W. Wang, Some generating relations for extended Appell's and Lauricella's hypergeometric functions, Rocky Mountain Journal of Mathematics. In press.
  9. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78, no. 1 (1997), 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  10. M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159, no. 2 (2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  11. N. U. Khan and M. Ghayasuddin, Generalization of extended Appell's and Lauricella's hypergeometric functions, Honam Mathematical Journal 37, no. 1 (2015), 113-126. https://doi.org/10.5831/HMJ.2015.37.1.113
  12. R. K. Parmar, A New Generalization of Gamma, Beta, Hypergeometric and Confluent Hypergeometric Functions, LE MATEMATICHE, vol. LXVIII(2013), 33-52.
  13. Y. L. Luke, The special functions and their approximations, vol. 1, New York, Academic Press 1969.